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Abstract

On social networks, algorithmic personalization drives users into filter bubbles where they
rarely see content that deviates from their interests. We present a model for content curation and
personalization that avoids filter bubbles, along with algorithmic guarantees and nearly matching
lower bounds. In our model, the platform interacts with n users over T timesteps, choosing
content for each user from k categories. The platform receives stochastic rewards as in a multi-
arm bandit. To avoid filter bubbles, we draw on the intuition that if some users are shown some
category of content, then all users should see at least a small amount of that content. We first
analyze a naive formalization of this intuition and show it has unintended consequences: it leads
to “tyranny of the majority” with the burden of diversification borne disproportionately by those
with minority interests. This leads us to our model which distributes this burden more equitably.
We require that the probability any user is shown a particular type of content is at least γ times
the average probability all users are shown that type of content. Full personalization corresponds
to γ = 0 and complete homogenization corresponds to γ = 1; hence, γ encodes a hard cap
on the level of personalization. We also analyze additional formulations where the platform
can exceed its cap but pays a penalty proportional to its constraint violation. We provide
algorithmic guarantees for optimizing recommendations subject to these constraints. These
include nearly matching upper and lower bounds for the entire range of γ ∈ [0, 1] showing that the
cumulative reward of a multi-agent variant of the Upper-Confidence-Bound algorithm is nearly
optimal. Using real-world preference data, we empirically verify that under our model, users
share the burden of diversification and experience only minor utility loss when recommended
more diversified content.

1 Introduction

Over the past decade, large internet platforms have amassed an unprecedented level of social and
political power. Research has shown that the feedback loops generated by algorithmic recommen-
dations increase polarization [21, 23, 30]. Echo chambers created by algorithmic recommendations
on these platforms can have a wide range of adverse effects, such as amplifying and creating glass
ceilings for minorities [31], as well as limiting exposure and job recommendations [14]. They also
lead to disinformation and propaganda being disproportionately spread to minoritized groups [15].

In this paper, we propose an approach to content recommendation that simultaneously preserves
the positive aspects of personalization while avoiding the pitfalls of filter bubbles.
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We do so by introducing a model that ensures that if some users are served a particular category
of content, then all users will see at least a small amount of that content. For example, if a network
includes individuals across a political spectrum, then every user will be exposed to at least a small
amount of news from opposing perspectives. This allows a platform to present diverse content
without forcing content on its users that no one is interested in. This approach builds upon seminal
work by Celis et al. [10] who initiated the study of algorithmic approaches to reducing polarization.
However, our approach to avoiding filter bubbles is different and our analysis techniques diverge
significantly, as detailed in Section 1.2.

We model a platform recommending content to users with a standard multi-armed bandit
formulation. There are k categories of content—such as fashion, sports, left-learning political
content, right-leaning political content, and so on—and n users. For each user and content category,
the platform receives a stochastic reward from an unknown distribution for showing the user content
from that category, measured, for example, in terms of engagement or ad revenue. The platform
interacts with the n users over T timesteps, at each timestep choosing a distribution over content
categories for each user. The platform’s goal is to maximize its cumulative reward. Standard bandit
algorithms would eventually learn for each user the category with maximal expected reward and
only show them content from that category, at which point the user’s content recommendations
would be caught in a filter bubble.

1.1 Our contributions

We propose a flexible approach to disincentivizing filter bubbles that adapts to the interests of the
individuals on the network. We summarize our contributions along the following two axes.

1.1.1 Modeling contributions

We first analyze an approach that requires that the distribution of content shown to any one user is
not far from the distribution shown to the population, so users cannot be siloed into disjoint filter
bubbles. However, we show that the optimal recommendations exacerbate tyranny of the majority :
the burden of diversification is borne by groups with minority interests (as often happens with
naive approaches to diversification). A majority group will exclusively see content that they most
enjoy while recommendations for minority users become far less relevant.

An equitable approach to preventing filter bubbles. The intuition behind our revised
approach is that in order to avoid filter bubbles and tyranny of the majority, (1) users should
primarily see content that they are most interested in (thus avoiding tyranny of the majority), and
(2) if some users are shown a particular type of content, then all users should see at least a small
amount of that content (thus avoiding filter bubbles). When both requirements are satisfied, users
with majority interests will be exposed to content that interests minority groups and vice versa.

Formally, for each user, we impose the following constraint: we require that the probability she
is shown content from a particular category must be at least γ times the average probability the
entire population is shown content from that category, where γ ∈ [0, 1] is a tunable parameter.
We refer to this model as Formulation 1. Setting γ = 0 corresponds to complete personalization
and setting γ = 1 requires that everyone see the same distribution of content. Moreover, if no one
on the network is interested in some type of content, there is no requirement that users be shown
that content. When γ ≤ 1

2 , we show that conditions (1) and (2) are met and thus the burden of
diversification is borne more equally among all users. We also provide a second formulation, called
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Formulation 2, where instead of imposing hard constraints, the platform is penalized based on
the the extent to which it violates the γ constraint.

Taxation without knowledge of the true content distribution. The penalization described
above depends on the true, underlying probabilities that the platform assigns to different types of
content at each timestep. To augment the flexibility of our approach, we also analyze a model
where an auditor only has access to a dataset describing the types of content that users were
actually shown, as opposed to a description of the true distributions. In this model, the platform
is penalized at the end of the T timesteps based on the extent to which the empirical distribution
over content shown to each user violates the γ constraint described above. We refer to this model
as Formulation 3.

1.1.2 Technical contributions

Since the platform does not know the reward distributions (corresponding to the users’ preferences
for the different types of content), it must learn a high-reward policy over the course of the T rounds.
We analyze the regret of the Upper-Confidence-Bound (UCB) algorithm. The key challenges we
face are providing nearly-matching lower bounds—which depend on structure exhibited by the
specific constraints that we impose—and bounding the regret under Formulation 3, under which
the optimal policy may be history-dependent.

Regret upper bounds. Under Formulation 1, we measure regret as the difference between (1)
the cumulative reward of the optimal distribution over content that satisfies our γ constraint and
(2) the cumulative reward of the platform’s learning algorithm. Crucially, the optimal distribution
(1) is defined by the users’ reward distributions, but these are unknown to the learning algorithm.
When γ = 1, a variant of the UCB algorithm achieves a regret of Õ(

√
nkT ) and for γ < 1, another

variant achieves a regret of Õ(n
√
kT ). Under Formulations 2 and 3, we measure regret with respect

to the optimal policy that maximizes the cumulative reward minus the penalty. Our regret bounds
are Õ(n

√
kT ).

Key challenge. Under Formulation 3, the optimal policy may be history-dependent : it may
dynamically adjust its recommendations based on the empirical distribution over content thus far,
and thus the magnitude of the final penalty. This is in contrast to Formulations 1 and 2, where the
optimal policy is a fixed distribution over content.

Regret lower bounds. We provide a nearly-matching lower bound on regret under Formulation
1. As in the upper bound, our lower bound transitions from an Ω(n) dependence for small γ to
an Ω(

√
n) dependence for large γ. For k = 2 arms, we prove a lower bound of Ω(n

√
T ) for γ < 1

2 .

Meanwhile, for all k ≥ 2 and all γ ∈ [0, 1], we prove a lower bound of Ω(
√
nkT ). This means that

no algorithm has regret better than Ω(n
√
T ) for γ < 1

2 or Ω(
√
nkT ) for any γ ∈ [0, 1].

This transition from a Θ(n) to Θ(
√
n) dependence elucidates a tension between the reward of

the optimal policy and the ability of the learning algorithm to compete with the optimal policy.
As γ grows, the set of distributions that the platform can show the user while still satisfying the γ
constraint shrinks. Thus, the optimal policy comes from an increasingly restricted set so the regret
benchmark is smaller. Likewise, as γ grows, the learner has to use an increasingly restricted set
of policies to compete with the optimal policy. Since regret shrinks as γ grows, we show that the
optimal policy’s reward diminishes at a faster rate than the learner’s handicap in competing with
the optimal policy.
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Key challenge. Lower bounds for bandit problems typically follow by identifying two worst-
case problem instances that are similar enough that any algorithm would not be able to statistically
distinguish between them, but are distinct enough to ensure that even if an algorithm has low regret
on one instance, it will have high regret on the other. Simply creating n copies (one for each user)
of the worst-case problem instances used in standard bandit lower bounds would lead to a large
statistical difference between problem instances, thus precluding an Ω(n) dependence. Our lower
bound construction therefore takes advantage of structure specific to our model.

Experiments. We analyze the optimal policies under the formulations from Section 1.1.1 using
real user preference data [18]. We empirically verify that when users’ preferences are heterogeneous,
subgroups share the burden of diversification. We also show that users experience only a minor
loss in utility when recommended diversified content.

1.2 Related work

There has been significant interest in understanding the mechanics of how recommender systems
affect large-scale opinion dynamics, and if and when they lead to polarization [e.g., 6, 16, 28]. Most
of the analysis has focused on how recommender systems impact network structure [32] and how this
affects the spread of information and the opinions of members on the network. Recently there have
been growing calls to algorithmically increase “exposure diversity” and combat filter bubbles [7,
13, 19]. Castells et al. [9] discuss methodologies and metrics to assess recommendation diversity,
and Halpern et al. [17] analyze the trade-off between diversity and engagement in recommendation
algorithms.

The most related research to ours is seminal work by Celis et al. [10], who initiated the study
of algorithmic approaches to reducing polarization. There are a variety of differences between our
work and theirs, highlighted below.

• Modeling approach. Celis et al. [10] suggest that a regulator should place pre-determined,
fixed upper and lower bounds on the probability that each arm is played so that no user can
exclusively see one type of content. Choosing bounds for each type of content, however, may
be challenging. (For example, how should bounds on fashion content and major world events
compare?) Moreover, if no user is interested in a type of content, it may not make sense to
force all users to see it. The regulator would have to make these differential decisions, which
would be a divisive and controversial task. These concerns are largely ameliorated under our
model.

• Stronger assumption on the regulator’s knowledge. Celis et al. [10] assume the regulator can
control the exact probabilities that the platform shows different types of content to users.
In contrast, in our Formulation 3, we propose a tax based on the content that the platform
actually showed the user. As we describe in Section 1.1.2, this introduces technical challenges
in providing a no-regret algorithm for the platform.

• Lower bounds. Our nearly-matching lower bounds help develop a complete understanding of
this problem.

Since the multi-armed bandit problem was proposed [33], many variants have been studied,
such as bandits with budgets [1, 5, 29], bandits with constraints [3, 12, 26, 27], and bandits with
floors on content [11, 34]. Only a few variants [e.g., 20] study multi-agent settings. However, they
usually still involve a common reward like in the classical multi-armed bandit problem. There has
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also been recent work on fairness in multi-armed bandits [e.g., 20, 22] but none of these focus on
the issues of filter bubbles and polarization in social networks.

2 Notation and model

We use Pd−1 = {x ∈ [0, 1]d : ∥x∥1 = 1} to denote the probability simplex and [k] to denote the set
[k] = {1, 2, . . . , k}.

Problem definition. There are n users and k categories of content—for example, fashion, sports,
right-leaning news, left-leaning news, and so on—each modeled as an arm of a k-armed bandit. An
instance of our problem, denoted ν = {Di,j : i ∈ [n], j ∈ [k]}, is defined by reward distributions Di,j

over [0, 1] with density function fi,j : [0, 1] → R≥0. This distribution models the platform’s reward
for showing user i content from category j, measured in terms of engagement or ad revenue, for
example. The set of all instances ν is denoted En,k. The mean of user i’s reward distribution for
arm j is denoted µi,j ∈ [0, 1], with µi = (µi,1, . . . , µi,k). The instance ν is unknown to the platform.

Interaction between platform and users. This interaction takes place over T timesteps. At
each timestep t ∈ [T ]:

1. The platform selects an action, which is a distribution over arms for each user. This distri-
bution corresponds to a random variable At ∈ [k]n over arm choices for each of the n users.
We use the notation at ∈ [k]n to denote the specific set of arms the platform plays on round
t, so it is a realization of the random variable At.

2. Given the set of arms at = (at,1, . . . , at,n) ∈ [k]n, the platform receives a reward for each user.
The reward for user i is drawn from the distribution Di,at,i . We use the random variable
Xt = (Xt,1, . . . , Xt,n) ∈ [0, 1]n to denote the platform’s reward on round t. We also use
xt ∈ [0, 1]n to denote a realization of this random variable.

Platform’s learning algorithm. The platform uses a learning algorithm, or policy, π to decide
the distribution over arms at each timestep. On timestep t ∈ [T ], the (randomized) policy π takes
as input the history ht−1 = (a1,x1, . . . ,at−1,xt−1) ∈ ([k]n × [0, 1]n)t−1 and returns the set of arms
at ∈ [k]n that will be played on round t. The conditional probability that At = at given the history
A1 = a1,X1 = x1, . . . ,At−1 = at−1,Xt−1 = xt−1 is denoted π(at | a1,x1, . . . ,at−1,xt−1), or more
compactly as π(at | ht−1). The notation Πn,k denotes the set of all policies π.

Distribution over outcomes. Since the reward distributions are independent, the conditional
distribution of the reward Xt ∈ [0, 1]n given At = at = (at,1, . . . , at,n) ∈ [k]n has density function

fat (xt) =

n∏
i=1

fi,at,i (xt,i) .

The interaction between the policy π and the instance ν induces a distribution Pπν over outcomes
with density function

fπν (a1,x1, . . . ,aT ,xT ) =
T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)fat(xt). (1)
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Platform’s goal. The platform’s overall goal is to choose a policy π that optimizes its total
reward

E
πν

[
n∑

i=1

T∑
t=1

Xi,t

]
. (2)

For each user i ∈ [n], the optimal policy would choose the arm ji that maximizes expected reward:
ji = argmaxj∈[k] {µi,j}. Classic bandit algorithms will eventually converge to this policy. However,
repeatedly showing user i content from category ji traps the user in a filter bubble. In the next
sections, we limit the platform’s ability to form filter bubbles.

3 A first attempt to disincentivize filter bubbles

We begin with a naive first attempt at disincentivizing filter bubbles and show that it has the harsh
unintended consequence of exacerbating “tyranny of the majority”: the burden of diversification
is borne by those with minority interests. Interestingly, this issue mirrors real-world attempts at
diversification where the labor associated with diversification is put disproportionately on members
of the underrepresented groups.

To motivate this first attempt, we observe that in a network with severe filter bubbles, members
are partitioned into groups which are exposed to disparate types of content. Thus, our first attempt
at avoiding filter bubbles ensures that the content recommendations are not too “spread out.” We
formalize this intuition by requiring that each user’s distribution over content is not too far from
the average distribution over content shown to the entire population.

More formally, building on the notation from Section 2, let πi(j | ht−1) denote the marginal
probability that the platform shows user i arm j on timestep t given the history ht−1, with
πi(ht−1) = (πi(1 | ht−1), . . . , πi(k | ht−1)). Next, let π̄(ht−1) =

1
n

∑n
i=1 πi(ht−1) denote the aver-

age of these marginal distributions. The jth component of π̄(ht−1), denoted π̄(j | ht−1), measures
the average probability that arm j is shown to any user. Under our naive first approach, we require
that the distance between the vectors πi(ht−1) and π̄(ht−1) is small under the ℓ∞-norm:

∥πi(ht−1)− π̄(ht−1)∥∞ = max
j∈[k]

|πi(j | ht−1)− π̄(j | ht−1)| ≤ ∆ (3)

for some ∆ > 0. (The ℓ∞-norm could be replaced by any norm, but we use the ℓ∞-norm for this
exposition.)

We now show that the optimal policy p∗
1, . . . ,p

∗
n ∈ Pk−1 leads to tyranny of the majority, where

p∗
1, . . . ,p

∗
n = argmaxp1,...,pn

{
n∑

i=1

µi · pi :

∥∥∥∥∥pi −
1

n

n∑
i′=1

pi′

∥∥∥∥∥
∞

≤ ∆, ∀i ∈ [n]

}
.

To illustrate the pitfalls of this approach, we analyze a setting where there are two types of content
(e.g., left- and right-leaning political content) and the users can be partitioned into disjoint sets
where one set only likes content from the first category (i.e., µi = (1, 0)). Meanwhile, the other
set only likes content from the second category (i.e., µi = (0, 1)). Without loss of generality, we
assume that the former set—which we denote as N—is the majority.

When ∆ ≥ |N |
n , the constraints are meaningless and allow for full personalization: p∗

i = (1, 0)

if i ∈ [N ] and p∗
i = (0, 1) if i ̸∈ [N ]. Therefore, we analyze the case where ∆ < |N |

n . We show that
under the optimal policy, the majority group will be able to exclusively see the content that they
enjoy: p∗

i = (1, 0) if i ∈ N . Meanwhile, the minority group’s recommendations take a hit in order
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to ensure that the constraints are satisfied. In particular, for all i ̸∈ N , p∗
i =

(
1− n∆

|N | ,
n∆
|N |

)
. The

proof of the following lemma is in Appendix A.

Lemma 3.1. Suppose that there are k = 2 arms and for some set N ⊆ [n] with |N | ≥ n
2 , µi =

(1, 0) for all i ∈ N and µi = (0, 1) for all i ̸∈ N . If ∆ < |N |
n , then p∗

i = (1, 0) if i ∈ N and

p∗
i =

(
1− n∆

|N | ,
n∆
|N |

)
otherwise.

Lemma 3.1 illustrates that under this approach, tyranny of the majority prevails at the expense
of minority interests.

4 Equitable approaches to disincentivizing filter bubbles

Motivated by Section 3, we propose three different formulations for disincentivizing filter bubbles
that avoid tyranny of the majority. The intuition behind these approaches is built upon the following
two pillars:

1. To avoid tyranny of the majority, users should primarily be recommended content they are
most interested in,

2. But to avoid filter bubbles, that content must contain a flavor of the content shown to the
entire population.

We show that it is possible to achieve both of these ends. If both conditions are satisfied, then
a policy like that of Lemma 3.1 where the majority group sees no minority content is not possi-
ble. By the first requirement, groups with minority interests will be recommended content that
they are interested in, which means that by the second requirement, the majority group’s content
recommendations will contain a small amount of that minority content, and vice versa.

4.1 Formulation 1: Personalization constraint

In our first formulation, we require that for each user i ∈ [n], πi(ht−1) is at least γπ̄(ht−1) for some
γ ∈ [0, 1]:

πi(ht−1) ≥ γπ̄(ht−1). (4)

Each user’s recommendations become less personalized as γ grows.
To illustrate the benefit of this approach over that of Section 3, we analyze the same polarized

example where there is a majority group N with µi = (1, 0) for all i ∈ N . For the minority group,
µi = (0, 1) for all i ̸∈ N. For all γ ≤ 1

2 , we show that under the optimal policy, the majority of
each group’s content recommendations match their interests, but both groups see some content
that appeals to the opposing group. In this case the optimal policy is defined as

p∗
1, . . . ,p

∗
n = argmaxp1,...,pn

{
n∑

i=1

µi · pi : pi ≥
γ

n

n∑
i′=1

pi′ , ∀i ∈ [n]

}
. (5)

The proof of the following lemma is in Appendix B.

Lemma 4.1. Suppose that there are k = 2 arms and for some set N ⊆ [n], µi = (1, 0) for all
i ∈ N and µi = (0, 1) for all i ̸∈ N . For γ ≤ 1

2 , the optimal policy has the following form:

p∗
i =


(
1− γ(n−|N |)

n , γ(n−|N |)
n

)
if i ∈ N(

γ|N |
n , 1− γ|N |

n

)
if i ̸∈ N.
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Since γ ≤ 1
2 , this policy ensures that users are mostly recommended content that they are

interested in: µi · p∗
i ≥ 1 − γ ≥ 1

2 for all i ∈ [n]. However, they are still shown a small fraction of
content that the other set of the population is interested in. We note that when N is the majority
group

(
|N | ≥ n

2

)
, the minority group [n] \N still sees more content that they are not interested in

than the majority group because γ|N |
n ≥ γ(n−|N |)

n . However, the burden of diversification is split
far more equally among the two groups than in Lemma 3.1. The policy mirrors a typical mode
of community forum discussions where members split time between listening to the opinions of
each person in the entire group (for a γ-fraction of the time) and breaking into focus groups about
specific topics (for a (1− γ)-fraction of the time).

In Section 5, we provide upper and lower bounds on the platform’s regret with respect to the
optimal policies p∗

1, . . . ,p
∗
n defined in Equation (5). Regret measures the difference between the

total reward of the optimal policy and that of the platform’s policy π. In other words, for any
instance ν and policy π, the expected regret is defined as

RT,1(π, ν) = T
n∑

i=1

p∗
i · µi − E

πν

[
n∑

i=1

T∑
t=1

Xi,t

]
. (6)

4.2 Formulation 2: Personalization penalty

We analyze a second formulation where there are no constraints on the platform’s policy, but the
platform is penalized based on the extent to which Equation (4) is violated. Given a parameter
η ≥ 0, this penalty is defined as

η

n∑
i=1

k∑
j=1

max {γπ̄(j | ht−1)− πi(j | ht−1), 0} .

In other words, the platform’s goal is to maximize its cumulative reward

reward2(π, ν; η, γ)

= E
πν

 n∑
i=1

 T∑
t=1

Xi,t − η
k∑

j=1

max {γπ̄(j | ht−1)− πi(j | ht−1), 0}


=

T∑
t=1

E
πν

 n∑
i=1

µi · πi(ht−1)− η
k∑

j=1

max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

} . (7)

The policy that maximizes Equation (7) is history independent and can be written as p∗ =
(p∗

1, . . . ,p
∗
n) with p∗

i ∈ Pk−1. The expected regret of a policy π under this formulation isRT,2(π, ν) =
reward2(p

∗, ν; η, γ)− reward2(π, ν; η, γ).

4.3 Formulation 3: Personalization penalty on the empirical distribution

Sections 4.1 and 4.2 describe models in which the platform is subject to constraints or penalties
based on the true distribution over content that it shows users. However, an auditor may only have
access to the realizations of those distributions—that is, the set of arms at,i ∈ [k] shown to each
user i at timestep t. Formulation 3 covers a setting in which a regulator penalizes the platform
at the end of the T timesteps based on the empirical distribution over content. Specifically, let
p̂i,j = 1

T

∑T
t=1 1{At,i=j} be the average number of times that the platform pulls arm j for user i.

8



At the end of the T timesteps, the platform is penalized based on how small p̂i,j is compared to
γ
n

∑n
i′=1 p̂i′,j . In particular, given a normalizing factor η, we define a penalty that is the analogue

of Equation (7):

η
n∑

i=1

k∑
j=1

max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}
.

The platform’s goal is therefore to maximize their expected total payoff minus this penalty,
which is equal to

reward3(π, ν; η, γ) = E
πν

 n∑
i=1

 T∑
t=1

Xi,t − η

k∑
j=1

max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}
=

n∑
i=1

 T∑
t=1

E
πν

[µi · πi(ht−1)]− η
k∑

j=1

E
πν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}] . (8)

Let π∗ be the policy that maximizes Equation (8). The regret of π is

RT,3(π, ν) = reward3(π
∗, ν; η, γ)− reward3(π, ν; η, γ).

A key difference between Equation (7) and Equation (8) is that in Equation (7), the platform
is penalized at every timestep whereas in Equation (8), the platform is penalized at the end of the
T timesteps. We make this distinction because the empirical distribution over content at a single
timestep would be extremely noisy.

5 Regret analysis

In this section, we discuss algorithms that the platform can use to minimize regret in the three for-
mulations from Section 4. We also provide a nearly-matching lower bound on regret for Formulation
1 in Section 5.1.3.

5.1 Regret analysis for Formulation 1

We begin with lower bounds on regret under Formulation 1. In Section 5.1.1, we show that a
variant of the UCB algorithm has regret O(n

√
Tk) for γ < 1 and in Section 5.1.2, we show that

a different variant of UCB has regret O(
√
nkT ) for γ = 1. We then prove in Section 5.1.3 that

these bounds are nearly optimal: for γ ≤ 1
2 and k = 2, no algorithm can achieve regret better than

Ω(n
√
T ), and for all k ≥ 2 and γ ∈ [0, 1] (including γ > 1

2) our bound is Ω(
√
nkT ).

The transition from a Θ(n) to a Θ(
√
n) dependence illustrates that as γ grows, the platform

is better able to compete with the optimal policy subject to the γ constraints. As γ grows, the
platform has a smaller set of distributions that it can use to compete with the optimal policy while
obeying the γ constraints. However, for the same reason, the cumulative reward of the optimal
policy shrinks as γ grows. Intuitively, the transition from a Θ(n) to a Θ(

√
n) dependence as γ

grows illustrates that the optimal policy’s reward degrades faster than the platform’s ability to
compete with that policy.
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5.1.1 Regret upper bound when γ < 1

We analyze a multi-agent variant of the UCB algorithm, which we call n-UCB, and show that it
has regret O(n

√
Tk) when γ < 1.

The n-UCB algorithm essentially runs a copy of classic UCB for each user, but coordinates
amongst these n UCB copies to ensure that they satisfy the global constraints. This requires
n-UCB to play distributions over arms from the set of distributions (p1, . . . ,pn) that satisfy the
constraints: pi ≥ γ

n

∑n
i′=1 pi′ for all i ∈ [n]. This is in contrast to the classic case where UCB

plays a single arm at each timestep. For completeness, we include a full description of n-UCB
(Algorithm 1) and the proof of the following theorem in Appendix C.

Theorem 5.1. Let π be the policy of n-UCB. Then RT,1(π, ν) = Õ(n
√
kT ).

5.1.2 Regret upper bound when γ = 1

When γ = 1, all users must be shown the same distribution of content. We can therefore reduce
our problem to a single-agent bandit problem with the reward distributions Dj =

∑n
i=1 Di,j for all

arms j ∈ [k]. We adapt the robust-UCB framework by Bubeck et al. [8] with the median-of-means
estimator [2], as summarized by Algorithm 2 in Appendix D. The full proof of the following theorem
is in Appendix D.

Theorem 5.2. Let π be the policy of Robust-UCB. Then RT,1(π, ν) = Õ(
√
nkT ).

5.1.3 Regret lower bound

In this section, we provide nearly-matching regret lower bounds. Our first bound holds when there
are k = 2 arms, γ ≤ 1

2 , and n is sufficiently large (n > 100). In this case, we prove a regret lower

bound of Ω(n
√
T ). Meanwhile, for all k ≥ 2 and γ ∈ [0, 1] (including γ > 1

2), we provide a bound

of Ω(
√
nkT ).

We begin with our main result (Theorem 5.3) and show in Corollary 5.4

Theorem 5.3. For all T ≥ 4, the regret is lower bounded as follows:

inf
π∈Πn,2

sup
ν∈En,2

RT,1(π, ν) ≥ max

{√
T

8

(
n

8e
− γ

(
n

8e
+

√
n

2π

))
,

√
nT

16e

}
.

Proof. This theorem follows directly from Lemmas 5.5 and 5.6.

Corollary 5.4. For all n > 100, γ ≤ 1
2 , and T ≥ 4, the regret is lower bounded as

inf
π∈Πn,2

sup
ν∈En,2

RT,1(π, ν) ≥
n
√
T

900
.

We now provide a proof sketch of the first part of Theorem 5.3. The full proof is in Appendix E.

Lemma 5.5. For all T ≥ 1, the regret is lower bounded as follows:

inf
π∈Πn,2

sup
ν∈En,2

RT,1(π, ν) ≥
√

T

8

(
n

8e
− γ

(
n

8e
+

√
n

2π

))
. (9)
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Proof sketch. Our proof is based on worst-case instances νb defined for any vector b ∈ {0, 1}n. For
each agent i ∈ [n], their reward distributions for the two arms are Bernoulli with means µi =

(µi,0, µi,1) where µi =
(
1
2 + ϵ, 12

)
if bi = 0, µi =

(
1
2 ,

1
2 + ϵ

)
if bi = 1, and ϵ =

√
1
8T . We lower bound

the expected regret E [RT,1 (π, νb)] by the right-hand-side of Equation (9), where the expectation is
over both the draw of the vector b ∼ Unif ({0, 1}n) and the distribution over outcomes Pπνb . This

implies that there exists an instance νb such that RT,1 (π, νb) ≥
√

T
8

(
n
8e − γ

(
n
8e +

√
n
2π

))
.

Without constraints, the optimal policy would exclusively show arm 0 to each user i ∈ [n] with
bi = 0 since it has higher reward for these users, and similarly it would exclusively show arm 1 to
each user i ∈ [n] with bi = 1. Due to the constraints, both the optimal policy and the policy π
must show some users the “wrong” arm on a non-negligible fraction of rounds. In total, the policy
π will lose the following reward from showing users the wrong arms:

ϵE
b

 T∑
t=1

∑
i:bi=0

E
πνb

[πi (1 | ht−1)] +
∑
i:bi=1

E
πνb

[πi (0 | ht−1)]

 .

We begin by proving that that optimal policy loses at most√
T

8
· γ(n− 1)

2
(10)

total reward from showing users the wrong arms. Meanwhile, we prove that any policy π will lose
at least √

T

8

(
γn

2
+

n

8e
− γ

(
n

8e
+

√
n

2π

))
(11)

total reward. We prove this by showing that for any user i ∈ [n], the distribution over outcomes
conditioned on bi = 0 is close to the distribution over outcomes conditioned on bi = 1. Intuitively,
this means that any policy π will struggle to distinguish whether bi = 0 or bi = 1. Taking the
difference of (11) and (10) implies the lemma.

We conclude by proving that for all γ ∈ [0, 1] and k ≥ 2, regret is lower bounded by

1

16e

√
nT (k − 1).

The proof is similar to that of existing bandit lower bounds [e.g., 24, Theorem 15.2], so we include
it for completeness in Appendix E.

Lemma 5.6. For all T ≥ 7(k−1)
n , the regret is lower bounded as follows:

inf
π∈Πn,k

sup
ν∈En,k

RT,1(π, ν) ≥
√

nT (k − 1)

16e
.

5.2 Regret analysis for Formulation 2

Under Formulation 2, a variation on UCB we call Penalty-UCB (Algorithm 3) achieves regret

Õ(n
√
kT ). Penalty-UCBmaintains estimates µ̂

(t)
i of each µi and selects the distribution maximizing

the estimated reward minus the penalty:(
p
(t)
i

)
i∈[n]

= argmax


n∑

i=1

pi · µ̂(t)
i − η

k∑
j=1

max

{
γ

n

n∑
i′=1

pi′,j − pi,j , 0

} .

For completeness, we include the proof of the following theorem in Appendix F.
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Theorem 5.7. Let π be the policy of Penalty-UCB. Then RT,2(π, ν) = Õ(n
√
kT ).

5.3 Regret analysis for Formulation 3

A key challenge under Formulation 3 is that the platform’s optimal strategy, given perfect infor-
mation about the reward distributions Di,j , may be history dependent. For example, the platform
may choose to increase or decrease personalization dynamically based on the empirical distribution
of content chosen thus far.

Nonetheless, we show that Penalty-UCB (Algorithm 3) competes with the optimal history-
dependent policy by reducing our analysis to that of Section 5.2. We use the notation π∗ to denote
the optimal policy that maximizes Equation (8).

First, we show that under Formulation 2, the optimal policy obtains a larger reward (measured
in terms of reward2) than π∗ under Formulation 3 (measured in terms of reward3). The full proof
is in Appendix G.

Lemma 5.8. Let p∗ = (p∗
1, . . . ,p

∗
n) with p∗

i ∈ Pk−1 be the policy that maximizes reward2
(
p, ν; η

T , γ
)
.

Then
reward2

(
p∗, ν;

η

T
, γ
)
≥ reward3(π

∗, ν; η, γ).

Proof sketch. For any arm j ∈ [k], we can exchange the expectation and the maximum in Equa-
tion (8) as follows:

E
π∗ν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
≥ max

{
γ

n

n∑
i′=1

E
π∗ν

[
p̂i′,j

]
− E

π∗ν
[p̂i,j ] , 0

}
.

By definition of Eπ∗ν [p̂i,j ], this allows us to show that reward3(π
∗, ν; η, γ) is upper-bounded by

n∑
i=1

k∑
j=1

(
T∑
t=1

µi,j E
π∗ν

[π∗
i (j | ht−1)]

−ηmax

{
1

T

T∑
t=1

(
γ

n

n∑
i′=1

E
π∗ν

[π∗
i′(j | ht−1)]− E

π∗ν
[π∗

i (j | ht−1)]

)
, 0

})
. (12)

We next define the history-independent policy p = (p1, . . . ,pn) such that

pi,j =
1

T

T∑
t=1

E
π∗ν

[π∗
i (j | ht−1)] .

We rearrange Equation (12) and use the definition of p∗ to get that

reward3(π
∗, ν; η, γ) ≤

n∑
i=1

k∑
j=1

(
Tµi,jpi,j − ηmax

{
γ

n

n∑
i′=1

pi′,j − pi,j , 0

})

≤
n∑

i=1

k∑
j=1

(
Tµi,jp

∗
i,j − ηmax

{
γ

n

n∑
i′=1

p∗i′,j − p∗i,j , 0

})
= reward2

(
p∗, ν;

η

T
, γ
)
.

12



Next, we show that for any policy π that deterministically plays each of the k arms once in the
first k rounds, the difference between its rewards under Formulations 2 and 3 is bounded. This
condition holds for Penalty-UCB (Algorithm 3) and could be removed with a slightly more involved
analysis. The full proof is in Appendix G.

Lemma 5.9. Let π be any policy such that πi(t | ht−1) = 1 for all t ≤ k and i ∈ [n]. For any
instance ν,

reward2

(
π, ν;

η

T
, γ
)
≤ reward3(π, ν; η, γ) + ηnk(γ + 1)

√
10 log T

T
.

Proof sketch. For any arm j ∈ [k], we can exchange the expectation and the maximum in Equa-
tion (7) as follows:

1

T

T∑
t=1

E
πν

[
max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

}]

≥ max

{
E
πν

[
1

T

T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

)]
, 0

}
. (13)

Next, we use a result by Aven [4] to show that the right-hand-side of Equation (13) is lower-bounded
by

E
πν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
−

√√√√ 1

2T 2
·Var

(
T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

))
. (14)

We upper-bound the variance term in Equation (14) by 20T (γ+1)2 log T , which implies the lemma
statement.

Our regret bound follows from Lemmas 5.8 and 5.9 as well as Theorem 5.7. The proof is in
Appendix G.

Theorem 5.10. Let π be the policy played by Algorithm 3. Then the regret is bounded as

reward3(π
∗, ν; η, γ)− reward3(π, ν; η, γ) = Õ

(
n
√
kT +

ηnk(1 + γ)√
T

)
.

Even if η grows linearly in T , the regret bound in Theorem 5.10 will only grow with
√
T .

6 Empirical Results

To explore how our framework impacts exposure diversity in practice, we test it out on real world
data: the MovieLens dataset [18] which describes people’s expressed preferences for movies1. These
preferences take the form of ¡user, item, rating, timestamp¿ tuples, each the result of a user giving
a 0–5 star rating for a movie at a particular time.

1We use this dataset in order to analyze our methods on real-world user preferences, recognizing that movie
recommendation filter bubbles would likely not be as pernicious as political news filter bubbles, for example.

13



(a) Average probability placed on romance for
romance- and thriller-lovers.

(b) Average probability placed on thriller for horror-
and thriller-lovers.

Figure 1: Polarization cap: Content changes as a function of γ for 2 user groups. We compute the
optimal policy for 50 values of γ equally spaced between [0, 1].

6.1 Experimental setup

There are n = 58 users, randomly selected from the database, and a set K of k = 18 movie genres:
K = {Action, Adventure, Animation, Children, Comedy, Crime, Documentary, Drama, Fantasy,
Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western}. Each genre is
paired with an associated index in [k] determined by alphabetically ordering K.

For each movie m ∈ M , where M is the set of all movies, there is an associated genre set
mK ⊆ [k] with |mK | ≥ 1 (a movie could belong to multiple genres). We use the ratings data to
generate preferences for the users. For each movie m ∈ Mi, where Mi is the set of movies watched
by user i ∈ [n], the user gives a numeric rating ri,m on a 5-star scale with half-star increments:
ri,m ∈ {0.5, 1, 1.5, . . . , 5.0}. We sum these ratings by genre and divide by the number of movies that
user i watched from that genre. This results in an average rating µi,j ∈ [0, 5] per genre j ∈ [k].
Finally, we divide µi,j by 5 so that µi,j ∈ [0, 1]. In the end,

µi,j =

∑
m∈Mi

ri,m · 1 {j ∈ mK}∑
m∈Mi

1 {j ∈ mK}
· 1
5
.

Using the µis as the mean reward vectors, we use linear programs (LPs) to solve for the optimal
policy under no constraints and under both our polarization cap and polarization tax frameworks.

6.2 Effect of the polarization cap and tax on content recommendations

We begin by investigating the effects that our constraints from Formulation 1 (Section 4.1) have
on the optimal content distribution.

These experiments provide a parallel to Lemma 4.1, which shows that in a polarized population,
users share the burden of diversification. To model a polarized society, we restrict our attention to
two dissimilar genres: thriller and romance. In this restricted space, µi ∈ [0, 1]2. We call the users
who prefer the thriller genre thriller-lovers and those who prefer the romance genre romance-lovers.

In Figure 1a, we plot the probability placed on romance by the optimal policy (which maximizes∑n
i=1µi · pi such that pi ≥ γ

n

∑n
i′=1 pi′) as a function of γ. For comparison, we run the same
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(a) Probability placed on romance for romance-
lovers.

(b) Probability placed on romance for thriller-lovers.

Figure 2: Polarization tax: Content changes as function of γ and η for romance- and thriller-lovers.
We compute the optimal policy for 6 values of γ equally spaced between [0, 1] and 50 values of η
equally spaced between [0, 1].

experiments for two similar genres: thriller and horror. In Figure 1b, we plot the probability
placed on thriller.

In both Figures 1a and 1b, as γ increases, the content recommendations become more homo-
geneous. However, the rates at which the recommendations become homogeneous are significantly
different. In Figure 1a where the users are polarized, the content recommendations converge slowly.
It is not until γ = 0.9 that the content is completely homogeneous.

Meanwhile, in Figure 1b where the groups of users are similar, the recommendations become
homogeneous at a faster rate. In this example, they converge at approximately γ = 0.6.

Under Formulation 2—where the platform is subject to a penalty (Equation (7))—we perform
the same experiments for romance- versus thriller-lovers. These experiments are illustrated in
Figure 2 where we vary both η and γ. As before, the content distributions converge as γ increases.
However, η serves to modulate the impact of γ on content recommendations.

When η is small, the platform prefers to pay some tax to show more personalized content than
they would under the hard constraint from Formulation 1. In fact, in Figure 2a, we see that even
when γ = 1 (so the platform is penalized for any level of personalization), the platform prefers
to pay some tax and personalize its recommendations, but for sufficiently large η (approximately
η ≳ 0.2), the platform switches to obeying the γ constraint and paying no tax. For the other values
of γ, the content recommendations change more gradually as η grows. However, after a certain
point (η ≳ 0.4), only the value of γ leads to differences in the optimal policy.

6.3 Effect of the polarization tax on user utility

We next investigate the impact of the polarization penalty (Formulation 2) on the users’ utility. We
analyze the same setting from Section 6.2 where there is a polarized society consisting of romance-
and thriller-lovers. Letting (pγ;η

i )i∈[n] be the optimal policy under Equation (7) and (p∗
i )i∈[n] policy

with no penalty (η = 0), Figure 3a plots the ratio of the users’ cumulative utilities under these two
policies:

∑
µi · pγ;η

i /
∑

µi · p∗
i . Figure 3b plots the same quantity under the homogenous society
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(a) Romance- and thriller-lovers (b) Horror- and thriller-lovers (c) All user types

Figure 3: Multiplicative utility loss as a function of γ and η.

from Section 6.2 with only horror- and thriller-lovers.
In Figures 3a and 3b, utility decreases as γ and η grow, but there is a larger utility loss for the

polarized group (Figure 3a) compared to the homogeneous group (Figure 3b). Interestingly, in the
homogenous group (Figure 3b), utility continuously decreases as η increases, while in the polarized
group (Figure 3a), the utility loss eventually flattens out. This is because when the population is
homogeneous, as η increases the platform only recommends one genre rather than pay the tax, even
when γ is small. However, when users are polarized (Figure 2), the platform recommends both
genres and pays some tax for most values of γ. It is only when γ = 1 that the platform recommends
only one genre.

Figure 3c plots the same quantity but without restricting the genres (µi ∈ [0, 1]18). Since the
users’ preferences are more diverse, the users’ cumulative utility suffers a larger but still minimal
loss. This is because each user now sees a larger share of content they might not prefer since there
are more groups on the platform. Finally, in Appendix H, we provide plots illustrating the additive
utility loss (rather than multiplicative).

7 Conclusions and discussion

Our work proposes a flexible approach to disincentivizing filter bubbles that adapts to the interests
of the individuals on the network. Under our model, if some users are shown a particular type
of content, then all users see at least a small amount of that content. We show that our model
incentivizes diversity in a way that is equitable to users on the platform and discuss algorithms for
recommending content under our framework.

There remain many open questions around disincentivizing polarization in social networks. One
might want to distinguish between the content of protected minority groups and that of hate-focused
or troll groups. Our current formulation does not distinguish between these situations. One could
consider a model where the penalties or cap might scale non-linearly with the size of the group,
allowing for more effective moderation. In addition, there is more work to be done to understand
the precise impacts of our constraints on the utility of the users and platform. Rewards could
represent the profit of the platform or the utility of its users, and our current analysis does not
address this distinction.

However, the difference could be important when there is a wealth disparity between groups
and differences in utility of the users might not easily map to differences in the platform’s revenue.
A related direction could be to extend our model to maximize popular and well-studied notions of
fairness like Nash social welfare.

16



Acknowledgements. We thank Rediet Abebe for inspirational early discussions about this re-
search direction.

References

[1] Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks.
In ACM Conference on Economics and Computation (EC), pages 989–1006, 2014.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. In Proceedings of the Annual Symposium on Theory of Computing (STOC),
pages 20–29, 1996.

[3] Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Linear stochastic bandits
under safety constraints. In Conference on Neural Information Processing Systems (NeurIPS),
2019.

[4] Terje Aven. Upper (lower) bounds on the mean of the maximum (minimum) of a number of
random variables. Journal of applied probability, 22(3):723–728, 1985.

[5] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knap-
sacks. In Symposium on Foundations of Computer Science (FOCS), 2013.

[6] Christopher A Bail, Lisa P Argyle, Taylor W Brown, John P Bumpus, Haohan Chen, MB Fallin
Hunzaker, Jaemin Lee, Marcus Mann, Friedolin Merhout, and Alexander Volfovsky. Exposure
to opposing views on social media can increase political polarization. Proceedings of the Na-
tional Academy of Sciences, 115(37):9216–9221, 2018.

[7] Engin Bozdag and Jeroen Van Den Hoven. Breaking the filter bubble: democracy and design.
Ethics and information technology, 17:249–265, 2015.
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A Proofs about first attempt (Section 3)

Lemma 3.1. Suppose that there are k = 2 arms and for some set N ⊆ [n] with |N | ≥ n
2 , µi =

(1, 0) for all i ∈ N and µi = (0, 1) for all i ̸∈ N . If ∆ < |N |
n , then p∗

i = (1, 0) if i ∈ N and

p∗
i =

(
1− n∆

|N | ,
n∆
|N |

)
otherwise.

Proof. First, we write the expected reward as

n∑
i=1

pi · µi =
∑
i∈N

pi,1 +
∑
i ̸∈N

pi,2 = n− |N |+
∑
i∈N

pi,1 −
∑
i ̸∈N

pi,1,

so we can write our optimization problem as

maximize
∑

i∈N pi,1 −
∑

i ̸∈N pi,1,

subject to
∣∣pi,1 − 1

n

∑n
i′=1 pi′,0

∣∣ ≤ ∆.
(15)

Next, we show that there exists an optimal solution such that pi,1 = q1 for all i ∈ N and
pi,1 = q2 for all i ̸∈ N , for some q1, q2 ∈ [0, 1].

Claim A.1. An optimal solution to Equation (15) has pi,1 = q1 for all i ∈ N and pi,1 = q2 for all
i ̸∈ N , for some q1, q2 ∈ [0, 1].

Proof of Claim A.1. First, if N = ∅, then the optimal solution is to set pi,1 = 0 for all i ∈ [n], and
if N = [n], then the optimal solution is to set pi,1 = 1 for all i ∈ [n]. In both of these cases, the
claim holds.

Next, suppose N ̸= ∅ and N ̸= [n]. Let p1,0, . . . , pn,0 be an optimal solution to Equation (15)
and let q1 = 1

|N |
∑

i∈N pi,1 and q2 = 1
n−|N |

∑
i ̸∈N pi,1. This is a feasible solution to Equation (15)

because
1

n
(|N |q1 + (n− |N |)q2) =

1

n

n∑
i=1

pi,1,
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so for all i ∈ N , we have that

−∆ ≤ min
j∈N

pj,0 −
1

n

n∑
i′=1

pi′,0 ≤ q1 −
1

n
(|N |q1 + (n− |N |)q2) ≤ max

j∈N
pj,0 −

1

n

n∑
i′=1

pi′,0 ≤ ∆.

Similarly, for all i ̸∈ N ,

−∆ ≤ min
j ̸∈N

pj,0 −
1

n

n∑
i′=1

pi′,0 ≤ q2 −
1

n
(|N |q1 + (n− |N |)q2) ≤ max

j ̸∈N
pj,0 −

1

n

n∑
i′=1

pi′,0 ≤ ∆.

Moreover, this solution has the same objective function value as p1,0, . . . , pn,0, so it is an optimal
solution.

Using this notation, we simplify the constraints by writing

q1 −
1

n

n∑
i=1

pi,1 = q1 −
1

n
(|N |q1 + (n− |N |)q2) =

(n− |N |)(q1 − q2)

n
.

Therefore, the constraint (Equation (15)) for any i ∈ N becomes

|q1 − q2| ≤
n∆

n− |N |
. (16)

Similarly, we may write

q2 −
1

n

n∑
i=1

pi,1 = q2 −
1

n
(|N |q1 + (n− |N |)q2) =

|N |(q2 − q1)

n
.

Therefore, the constraint (Equation (15)) for any i ̸∈ N becomes

|q1 − q2| ≤
n∆

|N |
. (17)

Since |N | ≥ n
2 , Equation (17) is tighter than Equation (16). Therefore, our optimization

problem can be written as the LP

maximize g(q1, q2) = |N |q1 − (n− |N |)q2

subject to q2 ≥ q1 −
n∆

|N |
(18)

q2 ≤ q1 +
n∆

|N |
(19)

0 ≤ q2, q1 ≤ 1

The vertices (q1, q2) of this LP polytope and their objective values g(q1, q2) are

Intersection of Equations (18) and (19): Infeasible

Intersection of Equation (18) and q2 = 0:
(
q
(1)
1 , q

(1)
2

)
=

(
n∆

|N |
, 0

)
g
(
q
(1)
1 , q

(1)
2

)
= n∆
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Intersection of Equation (18) and q2 = 1: Infeasible

Intersection of Equation (18) and q1 = 0: Infeasible

Intersection of Equation (18) and q1 = 1:
(
q
(2)
1 , q

(2)
2

)
=

(
1, 1− n∆

|N |

)
g
(
q
(2)
1 , q

(2)
2

)
= 2|N | − n+ n∆

(
n

|N |
− 1

)
Intersection of Equation (19) and q2 = 0: Infeasible

Intersection of Equation (19) and q2 = 1:
(
q
(3)
1 , q

(3)
2

)
=

(
1− n∆

|N |
, 1

)
g
(
q
(3)
1 , q

(3)
2

)
= 2|N | − n+ n∆

Intersection of Equation (19) and q1 = 0:
(
q
(4)
1 , q

(4)
2

)
=

(
0,

n∆

|N |

)
g
(
q
(4)
1 , q

(4)
2

)
= −n∆(n− |N |)

|N |
Intersection of Equation (19) and q1 = 1: Infeasible.

Finally, we have vertices
(
q
(5)
1 , q

(5)
2

)
= (0, 0) with g

(
q
(5)
1 , q

(5)
2

)
= 0 and

(
q
(6)
1 , q

(6)
2

)
= (1, 1) with

g
(
q
(6)
1 , q

(6)
2

)
= 2|N | − n. Since ∆ < |N |

n , (q1, q2) = (0, 1) and (q1, q2) = (1, 0) are infeasible.

Since |N | ≥ n
2 ,
(
q
(3)
1 , q

(3)
2

)
=
(
1− n∆

|N | , 1
)
maximizes the objective value, which implies the lemma

statement.

B Proofs about our more equitable approach (Section 4)

Lemma 4.1. Suppose that there are k = 2 arms and for some set N ⊆ [n], µi = (1, 0) for all
i ∈ N and µi = (0, 1) for all i ̸∈ N . For γ ≤ 1

2 , the optimal policy has the following form:

p∗
i =


(
1− γ(n−|N |)

n , γ(n−|N |)
n

)
if i ∈ N(

γ|N |
n , 1− γ|N |

n

)
if i ̸∈ N.

Proof. Our goal is to find distributions p1, . . . ,pn ∈ P1 to the optimization problem

maximize
∑n

i=1 pi · µi =
∑

i∈N pi,1 +
∑

i ̸∈N pi,2
such that pi,1 ≥ γ

n

∑n
i′=1 pi′,1, ∀i ∈ [n]

pi,2 ≥ γ
n

∑n
i′=1 pi′,2, ∀i ∈ [n]

(20)

We claim that without loss of generality, we may set pi,1 = q1 for all i ∈ N and pi,2 = q2 for all
i ̸∈ N , for some q1, q2 ∈ [0, 1].

Claim B.1. An optimal solution to Equation (20) has pi,1 = q1 for all i ∈ N and pi,2 = q2 for all
i ̸∈ N , for some q1, q2 ∈ [0, 1].

Proof of Claim B.1. First, if N = ∅, then the optimal solution is to set pi,2 = 1 for all i ∈ [n], and
if N = [n], then the optimal solution is to set pi,1 = 1 for all i ∈ [n]. In both of these cases, the
claim holds.

21



Next, suppose N ⊂ [n] and N ̸= ∅. Let p1, . . . ,pn ∈ P1 be an optimal solution to Equation (20)
and let q1 = 1

|N |
∑

i∈N pi,1 and q2 = 1
n−|N |

∑
i ̸∈N pi,2. This is a feasible solution to the constraints

in Equation (20) because

q1 =
1

|N |
∑
i∈N

pi,1 ≥
1

|N |
∑
i∈N

γ

n

n∑
i′=1

pi′,1 =
γ

n

n∑
i=1

pi,1 =
γ

n

∑
i∈N

pi,1 +
∑
i ̸∈N

(1− pi,1)


=

γ

n
(|N |q1 + (n− |N |) (1− q2)) .

Similarly,

q2 =
1

|N |
∑
i∈N

pi,2 ≥
1

|N |
∑
i∈N

γ

n

n∑
i′=1

pi′,2 =
γ

n

n∑
i=1

pi,2 =
γ

n

∑
i∈N

(1− pi,1) +
∑
i ̸∈N

pi,1


=

γ

n
(|N | (1− q1) + (n− |N |)q2) .

Moreover, the objective functions are the same because

|N |q1 + (n− |N |)q2 =
∑
i∈N

pi,1 +
∑
i ̸∈N

pi,2.

Therefore, the claim holds.

Based on Claim B.1, we may write our optimization problem as

maximize |N |q1 + (n− |N |)q2
such that q1 ≥

γ

n
(|N |q1 + (n− |N |) (1− q2))

1− q1 ≥
γ

n
(|N | (1− q1) + (n− |N |)q2)

q2 ≥
γ

n
(|N | (1− q1) + (n− |N |)q2)

1− q2 ≥
γ

n
(|N |q1 + (n− |N |) (1− q2))

q1, q2 ∈ [0, 1].

Rearranging terms, our optimization problem is

maximize g(q1, q2) = |N |q1 + (n− |N |)q2

such that q1 ≥
γ(n− |N |)
n− γ|N |

(1− q2) (21)

q1 ≤ 1− γ(n− |N |)
n− γ|N |

· q2 (22)

q1 ≥ 1− n− γ(n− |N |)
n− γ|N |

· q2 (23)

q1 ≤
n− γ(n− |N |)

γ|N |
(1− q2) (24)

q1, q2 ≥ 0 and q1, q2 ≤ 1. (25)
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To analyze the corners of this LP polytope, we identify where the eight hyperplanes in Equa-
tions (21)-(25) intersect. Note that Equations (21) and (22) are parallel, so they don’t intersect.
The same is true of Equations (23) and (24). Moreover, q1 = 0 if and only if q2 = 1 by Equa-
tions (21) and (24), so we ignore the intersections with q1 = 0 and q2 = 1. This leads to the
following corners (q1, q2) with objective values g(q1, q2):

Intersection of (21) and (23):
(
q
(1)
1 , q

(1)
2

)
=

(
γ(n− |N |)

n
,
γ|N |
n

)
g
(
q
(1)
1 , q

(1)
2

)
=

2γ|N |(n− |N |)
n

Intersection of (21) and (24):
(
q
(2)
1 , q

(2)
2

)
= (0, 1)

g
(
q
(2)
1 , q

(2)
2

)
= n− |N |

Intersection of (21) and q2 = 0:
(
q
(3)
1 , q

(3)
2

)
=

(
γ(n− |N |)
n− γ|N |

, 0

)
g
(
q
(3)
1 , q

(3)
2

)
=

γ(n− |N |)|N |
n− γ|N |

Intersection of (21) and q1 = 1: Not feasible

Intersection of (22) and (23):
(
q
(4)
1 , q

(4)
2

)
= (1, 0) (26)

g
(
q
(4)
1 , q

(4)
2

)
= |N |

Intersection of (22) and (24):
(
q
(5)
1 , q

(5)
2

)
=

(
1− γ

(
1− |N |

n

)
, 1− γ|N |

n

)
g
(
q
(5)
1 , q

(5)
2

)
= n− 2γ|N |(n− |N |)

n
Intersection of (22) and q2 = 0: (q1, q2) = (1, 0) as in Equation (26)

Intersection of (22) and q1 = 1: (q1, q2) = (1, 0) as in Equation (26)

Intersection of (23) and q2 = 0: (q1, q2) = (1, 0) as in Equation (26)

Intersection of (23) and q1 = 1: (q1, q2) = (1, 0) as in Equation (26)

Intersection of (24) and q2 = 0: Not feasible.

Intersection of (24) and q1 = 1: Not feasible.

For γ ≤ 1
2 , the optimum is achieved at

(
q
(5)
1 , q

(5)
2

)
=
(
1− γ

(
1− |N |

n

)
, 1− γ|N |

n

)
, so the lemma

holds.

C Proofs about the Formulation 1 regret upper bound when γ < 1
(Section 5.1.1)

Claim C.1. With probability 1− δ, for all i ∈ [n], t ∈ [T ] and j ∈ [k],

µ̂
(t)
i,j ≥ µi,j ≥ µ̂

(t)
i,j − 2β

(t)
u,i

Proof. Consider a fixed iteration t. For i ∈ [n] and j ∈ [k] and ℓ ∈ [t], let τ = infs{Ni,j(s) ≥ ℓ}

and v̂ℓi,j =
1
ℓ

τ∑
s=1

r
(s)
i,j 1

{
j
(s)
i = j

}
. Since the v̂ℓi,j are independent in ℓ, i, and j applying Hoeffding’s
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Algorithm 1 Multi-agent UCB (defined by parameter δ)

Input: Failure probability δ ∈ (0, 1)

1: Set Ni,j(0) = 0, ∀i ∈ [n], j ∈ [k]; µ̂
(0)
i = 0, ∀i ∈ [n]

2: for t ∈ {1, . . . , T} do
3: if t ∈ {1, . . . , k} then

4: Set p
(t)
i = et

5: else

6: Set
(
p
(t)
i

)
i∈[n]

= argmax
(pi)i∈[n]∈S

n∑
i=1

pi · µ̂(t−1)
i

7: Draw an arm j
(t)
i ∼ p

(t)
i ∀i ∈ [n]

8: Receive reward r
(t)
i ∼ D

i,j
(t)
i

9: For all i ∈ [n], set N
i,j

(t)
i

(t) = N
i,j

(t)
i

(t− 1) + 1 ▷ Increment the counter for arm j
(t)
i

10: Set Ni,j(t) = Ni,j(t− 1), ∀i ∈ [n] and j ̸= j
(t)
i ▷ Do not increment the other counters

11: Set β
(t)
i,j =

√
1

Ni,j(t)
log 2Tnk

δ , ∀i ∈ [n], j ∈ [k] ▷ Define confidence intervals

12: µ̂
(t)
i,j = 1

Ni,j(t)

t∑
τ=1

r
(τ)
i 1

{
j
(τ)
i = j

}
+ β

(t)
i,j , ∀i ∈ [n], j ∈ [k] ▷ Estimate mean rewards

inequality with parameter δ′ = δ/(tnk), with probability greater than 1− δ′,

|v̂ℓi,j − µi,j | ≤
√

log(2/δ′)

ℓ

Applying the union bound for all ∀ℓ ∈ [t],∀i ∈ [n], ∀j ∈ [k] we have that:

P

(
∃ℓ ∈ [t],∃i ∈ [n],∃j ∈ [k] : |v̂ℓi,j − µi,j | ≥

√
log(2/δ′)

ℓ

)

≤
t∑

ℓ=1

n∑
i=1

k∑
j=1

P

(
|v̂ℓi,j − µi,j | ≥

√
log(2/δ′)

Ni,j(t)

)
≤ tnkδ′ = δ

Thus with probability at least 1− δ, ∀ℓ ∈ [t],∀i ∈ [n],∀j ∈ [k],

|v̂ℓi,j − µi,j | ≤
√

log(2tnk/δ)

ℓ
.

Since µ̂t
i,j = v̂

Ni,j(t)
i,j + β

(t)
i,j and Ni,j(t) ∈ [t] ∀i, j with probability at least 1− δ

µ̂t
i,j − 2β

(t)
i,j ≤ µi,j ≤ µ̂t

i,j .

Theorem 5.1. Let π be the policy of n-UCB. Then RT,1(π, ν) = Õ(n
√
kT ).
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Proof. Fix a timestep t ∈ [T ]∑
i∈[n]

(p∗
i · µi − p

(t)
i · µi) =

∑
i∈[n]

(p∗
i · µi − p

(t)
i · µ̂(t)

i + p
(t)
i · µ̂(t)

i − p
(t)
i · µi)

≤
∑
i∈[n]

(p∗
i · µi − p∗

i · µ̂
(t)
i + p

(t)
i · µ̂(t)

i − p
(t)
i · µi)

By Claim C.1, p · µi ≤ p · µ̂(t)
i ∀i ∈ [n] and all p ∈ Rk

≥0∑
i∈[n]

(p∗
i · µi − p

(t)
i · µi) ≤

∑
i∈[n]

(p∗
i · µ̂

(t)
i − p

(t)
i · µi)

≤
∑
i∈[n]

p
(t)
i · β(t)

i

Thus

RT ≤
T∑
t=1

∑
i∈[n]

p
(t)
i · β(t)

i

Let Fi,t−1 denote the canonical filtration σ((Xi,s,p
(s)
i ) : 0 ≤ s < t) on the choice of p

(t)
i and

let j
(t)′

i be a random variable distributed as p
(t)
i | Fi,t−1 and conditionally independent from j

(t)
i,t ,

i.e. j
(t)′

i ⊥ j
(t)
i | Fi,t−1. Note that by definition the following equality holds:

E
j
(t)
i ∼p

(t)
i

[β
(t)

i,j
(t)
i

] = E
j
(t)′
i ∼p

(t)
i

[β
(t)′

i,j
(t)′
i

| Fi,t−1].

Consider the following random variables Ai,t = E
j
(t)′
i ∼p

(t)
i

[β
i,j

(t)′
i

| Fi,t−1] − β
i,j

(t)
i

(t). Note that

Mi,t =
∑t

s=1Ai,s is a martingale. Since |At| ≤ 2
√

2 log(Tnk/δ), using this as the bound in Azuma-
Hoeffding and taking a union bound over i ∈ [n] and t ∈ T implies that with probability at least
1− δ,

RT =

T∑
t=1

n∑
i=1

p
(t)
i · β(t)

i ≤
T∑
t=1

n∑
i=1

β
(t)

i,j
(t)
i

+ nT

√
1

T
log

(
Tnk

δ

)
log

(
1

δ

)

=
T∑
t=1

n∑
i=1

β
(t)

i,j
(t)
i

+ n

√
T log

(
Tnk

δ

)
log

(
1

δ

)

Now we bound
n∑

i=1

T∑
t=1

β
(t)

i,j
(t)
i

,

T∑
t=1

n∑
i=1

β
(t)

i,j
(t)
i

=
T∑
t=1

n∑
i=1

k∑
j=1

β
(t)
i,j 1

{
j
(t)
i = j

}
For fixed i, j

T∑
t=1

β
(t)
i,j 1

{
j
(t)
i = j

}
=
√
log(Tnk/δ)

Ni,j(T )∑
t=1

1/
√
t ≤ 2

√
Ni,j(T ) log(Tnk/δ)
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Therefore ∑
i∈[n]

T∑
t=1

β
(t)
i ≤ 2

n∑
i=1

k∑
j=1

√
Ni,j(T ) log(Tnk/δ)

≤ 2
n∑

i=1

√√√√k
k∑

j=1

Ni,j(T ) log(Tnk/δ)

= 2
n∑

i=1

√
kT log(Tnk/δ)

= 2n
√

kT log(Tnk/δ)

Where the second line follows from the concavity of
√
· and the penultimate line follows from the

fact that
k∑

j=1
Ni,j(T ) = T .

The result then follows by setting δ = 1
nT .

D Proofs about the Formulation 1 regret upper bound when γ = 1
(Section 5.1.2)

In this section, the distribution Dj =
∑n

i=1 Di,j is supported on [0, n] instead of [0, 1] and we denote
the average reward for arm j ∈ [k] as µj =

∑n
i=1 µi,j .

Definition D.1 (median-of-means estimator [2]). Let δ ∈ (0, 1) and X1, . . . , XT be i.i.d random
variables with mean E[X] = µ and variance E |X − µ|2 = σ2. Let m = ⌊8 log(1/δ) ∧ T/2⌋ and
t = ⌊T/m⌋. Let µ̄1, . . . , µ̄m be m empirical mean estimates, each one calculated on t data points
as follows:

µ̄1 =
1

t

t∑
s=1

Xs , µ̄2 =
1

t

2t∑
s=t+1

Xs , . . . , µ̄m =
1

t

mt∑
s=(m−1)t+1

Xs.

The median-of-means estimator µ̄(T, δ) is the median of these m empirical means.

Theorem 5.2. Let π be the policy of Robust-UCB. Then RT,1(π, ν) = Õ(
√
nkT ).

Proof. For all t ∈ [T ], j ∈ [k] the median-of-mean estimate at time t, µ̂
(t)
j with probability at least

1− δ we have

|µ̂(t)
j − µj | ≤

√
24n log(kT/δ)

T

By applying Lemma D.2 with σ2
j = n/4 which is justified by ClaimD.3 and then taking a union

bound over all arms j ∈ [k].
This event and Proposition 1 in Bubeck et al. [8] imply the desired regret upper bounds for the

Robust-UCB with median-of-means estimator. The result then follows by setting δ = 1
nT .

Lemma D.2. Let δ ∈ (0, 1). Let Xj,1, . . . , Xj,T be i.i.d random variables with mean E[Xj ] = µj

and E |Xj − µj |2 = σ2
j . Let m = ⌊8 log(1/δ) ∧ T/2⌋ and t = ⌊T/m⌋. Let

µ̄1
j =

1

t

t∑
s=1

Xj,s , µ̄2
j =

1

t

2t∑
s=t+1

Xj,s , . . . , µ̄m
j =

1

t

kt∑
s=(m−1)t+1

Xj,s,
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Algorithm 2 Robust-UCB (defined by parameter δ)

Input: Failure probability δ ∈ (0, 1), median-of-means estimator µ̄(t, δ)

1: Set Nj(0) = 0, µ̂
(0)
j = 0 ∀j ∈ [k]

2: for t ∈ {1, . . . , T} do
3: if t ∈ {1, . . . , k} then
4: Set p(t) = et
5: else
6: Set p(t) = argmax

p∈Pk−1

p · µ̂(t−1)

7: Draw an arm j(t) ∼ p(t)

8: Receive reward r(t) ∼ Dj(t)

9: Set Nj(t)(t) = Nj(t)(t− 1) + 1 ▷ Increment the counter for arm j(t)

10: Set Nj(t) = Nj(t− 1), ∀j ̸= j(t) ▷ Do not increment the other counters

11: Set β
(t)
j =

√
24n
Nj(t)

log Tk
δ , ∀j ∈ [k] ▷ Define confidence intervals

12: µ̂
(t)
j = µ̄j(Nj(t), δ) + β

(t)
j , ∀j ∈ [k] ▷ Get mean rewards estimates

be m empirical mean estimates, each one computed on t data points. Let µ̂j be the median of these
m empirical means. Then with probability at least 1− δ

|µ̂j − µ| ≤ σ

√
96 log(1/δ)

T
.

Proof. By Chebyshev’s inequality ∀ℓ ∈ [m]

P[|µ̄ℓ
j − µj | ≤ σ

√
12/t] ≥ 3/4

Let ϵ > 0 and Yℓ = 1

{
|µ̂ℓ

j − µj | > ϵ
}
for ℓ ∈ [k], For ϵ = σ

√
12/t, Yℓ is stochastically dominated

by a Bernoulli distribution with parameter p = 1/4. Thus using Hoeffding’s inequality for the tail
of a binomial distribution we get

P(|µ̂j − µj | > ϵ) = P

(
m∑
ℓ=1

Yℓ ≥ m/2

)
≤ P(Bin(m, 1/4) ≥ m/2) ≤ exp(−2m(p− 1/2)2) = exp(−m/8)

= δ.

Claim D.3. σ2
j = E[|Xj − µj |2] ≤ n/4 ∀j ∈ [k]

Proof.

E[|Xj − µj |2] = E

∣∣∣∣∣
n∑

i=1

Xi,j − µi,j

∣∣∣∣∣
2


≤
n∑

i=1

E[|Xi,j − µi,j |2]

≤
n∑

i=1

1/4 = n/4
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where the second line follows from the independence across users i and triangle inequality. While
the last line follows from Popoviciu’s variance inequality.

E Proofs about the Formulation 1 regret lower bounds (Section 5.1.3)

Lemma 5.5. For all T ≥ 1, the regret is lower bounded as follows:

inf
π∈Πn,2

sup
ν∈En,2

RT,1(π, ν) ≥
√

T

8

(
n

8e
− γ

(
n

8e
+

√
n

2π

))
. (9)

Proof. Our proof is based on worst-case instances νb defined for any vector b ∈ {0, 1}n. For each
user i ∈ [n], their reward distributions for the two arms are Bernoulli with means µi = (µi,0, µi,1)
where

µi =

{(
1
2 + ϵ, 12

)
if bi = 0(

1
2 ,

1
2 + ϵ

)
if bi = 1

(27)

where ϵ =
√

1
8T . We will lower bound the expected regret Eb [RT (π, νb)] over both the randomness

of the draw of the vector b ∼ Unif ({0, 1}n) and the distribution over outcomes Pπνb . This will
imply that for any policy π, there exists an instance νb such that

RT (π, νb) ≥
√

T

8

(
n

8e
− γ

(
n

8e
+

√
n

2π

))
.

Given an instance νb, the following distributions p1, . . . ,pn with

pi =


(
1− γ∥b∥1

n ,
γ∥b∥1

n

)
if bi = 0(

γ(n−∥b∥1)
n , 1− γ(n−∥b∥1)

n

)
if bi = 1.

are feasible policies. This is because n− ∥b∥1 is the number of 0’s in b and ∥b∥1 is the number of
1’s in b, so for any i such that bi = 0,

1−
γ ∥b∥1

n
≥ γ

n

∑
i:bi=0

(
1−

γ ∥b∥1
n

)
+
∑
i:bi=1

γ (n− ∥b∥1)
n

 = γ −
γ ∥b∥1

n

and

γ ∥b∥1
n

=
γ

n

∑
i:bi=0

γ ∥b∥1
n

+
∑
i:bi=1

(
1−

γ (n− ∥b∥1)
n

) .

Similarly, for any i such that bi = 1,

γ(n− ∥b∥1)
n

=
γ

n

∑
i:bi=0

(
1−

γ ∥b∥1
n

)
+
∑
i:bi=1

γ (n− ∥b∥1)
n


and

1−
γ(n− ∥b∥1)

n
= 1− γ +

γ ∥b∥1
n

≥ γ

n

∑
i:bi=0

γ ∥b∥1
n

+
∑
i:bi=1

(
1−

γ (n− ∥b∥1)
n

) =
γ ∥b∥1

n
.
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After simplifying, this policy has an objective value of∑
i:bi=0

(
1

2
+

(
1−

γ ∥b∥1
n

)
ϵ

)
+
∑
i:bi=1

(
1

2
+

(
1−

γ(n− ∥b∥1)
n

)
ϵ

)
=

n

2
+ (n− ∥b∥1)

(
1−

γ ∥b∥1
n

)
ϵ+ ∥b∥1

(
1−

γ(n− ∥b∥1)
n

)
ϵ

=
n

2
+ ϵ

(
n− 1

n
· 2γ ∥b∥1 (n− ∥b∥1)

)
.

Thus, the optimal policy’s expected cumulative reward is at least

nT

2
+ ϵ

(
nT − 1

n
· 2Tγ ∥b∥1 (n− ∥b∥1)

)
. (28)

Meanwhile, for any policy π, let π
(t)
i,0 = πi (0 | ht−1) denote the probability that the policy

chooses arm 0 for user i on round t given the history ht−1. The value π
(t)
i,0 is therefore a ran-

dom variable that depends on the history ht−1. Similarly, let π
(t)
i,1 = πi (1 | ht−1). The expected

cumulative reward of policy π is

E
πνb

 T∑
t=1

∑
i:bi=0

((
1

2
+ ϵ

)
π
(t)
i,0 +

1

2
π
(t)
i,1

)
+
∑
i:bi=1

(
1

2
π
(t)
i,0 +

(
1

2
+ ϵ

)
π
(t)
i,1

)
=

nT

2
+ ϵ

 T∑
t=1

∑
i:bi=0

E
πνb

[
π
(t)
i,0

]
+
∑
i:bi=1

E
πνb

[
π
(t)
i,1

]
=

nT

2
+ ϵ

nT −
T∑
t=1

∑
i:bi=0

E
πνb

[
π
(t)
i,1

]
+
∑
i:bi=1

E
πνb

[
π
(t)
i,0

] . (29)

Therefore, the expected regret of π is at least Equation (28) minus Equation (29), which is

ϵ

 T∑
t=1

∑
i:bi=0

E
πνb

[
π
(t)
i,1

]
+
∑
i:bi=1

E
πνb

[
π
(t)
i,0

]− 1

n
· 2Tγ ∥b∥1 (n− ∥b∥1)

 . (30)

We will begin incorporating the constraints by rewriting the first part of Equation (30) as

T∑
t=1

∑
i:bi=0

E
πνb

[
π
(t)
i,1

]
+
∑
i:bi=1

E
πνb

[
π
(t)
i,0

]
=

T∑
t=1

∑
i:bi=0

E
πνb

π(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+
∑
i:bi=1

E
πνb

π(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0

 (31)

+

T∑
t=1

γ (n− ∥b∥1)
n

n∑
j=1

E
πνb

[
π
(t)
j,1

]
+

γ ∥b∥1
n

n∑
j=1

E
πνb

[
π
(t)
j,0

] .

If ∥b∥1 <
n
2 , then

γ(n−∥b∥1)
n >

γ∥b∥1
n , so

T∑
t=1

γ (n− ∥b∥1)
n

n∑
j=1

E
πνb

[
π
(t)
j,1

]
+

γ ∥b∥1
n

n∑
j=1

E
πνb

[
π
(t)
j,0

] ≥
γ ∥b∥1

n
E
πνb

 T∑
t=1

n∑
j=1

(
π
(t)
j,1 + π

(t)
j,0

)
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= γ ∥b∥1 T.

Similarly, if ∥b∥1 >
n
2 ,

T∑
t=1

γ (n− ∥b∥1)
n

n∑
j=1

E
πνb

[
π
(t)
j,1

]
+

γ ∥b∥1
n

n∑
j=1

E
πνb

[
π
(t)
j,0

] ≥
γ (n− ∥b∥1)

n
E
πνb

 T∑
t=1

n∑
j=1

(
π
(t)
j,1 + π

(t)
j,0

)
= γ (n− ∥b∥1)T.

Therefore,

E
b∼{0,1}n

 T∑
t=1

γ (n− ∥b∥1)
n

n∑
j=1

E
πνb

[
π
(t)
j,1

]
+

γ ∥b∥1
n

n∑
j=1

E
πνb

[
π
(t)
j,0

] (32)

≥ γT E
b

[
∥b∥1 1{∥b∥1<n

2 } + (n− ∥b∥1)1{∥b∥1>n
2 }
]

= γT E
b

[
∥b∥1

(
1− 1{∥b∥1>n

2 }
)
+ (n− ∥b∥1)1{∥b∥1>n

2 }
]

= γT

(
E
b
[∥b∥1] + nE

[
1{∥b∥1>n

2 }
]
− 2E

[
∥b∥1 1{∥b∥1>n

2 }
])

. (33)

When b ∼ Unif ({0, 1}n), ∥b∥1 ∼ Bin
(
n, 12

)
. Therefore, Equation (33) is equal to

γT
(
n− 2E

[
∥b∥1

∣∣∣ ∥b∥1 > n

2

]
Pr
[
∥b∥1 >

n

2

])
= γT

(
n− E

[
∥b∥1

∣∣∣ ∥b∥1 > n

2

])
.

Since ∥b∥1 ∼ Bin
(
n, 12

)
,

E
[
∥b∥1

∣∣∣ ∥b∥1 > n

2

]
=

n

2n

(
2n−1 +

(
n− 1
n−1
2

))
[25] and by Stirling’s approximation,

E
[
∥b∥1

∣∣∣ ∥b∥1 > n

2

]
<

n

2
+

√
n

2π
.

We can use these facts to bound Equation (32) as follows:

E
b∼{0,1}n

 T∑
t=1

γ (n− ∥b∥1)
n

n∑
j=1

E
πνb

[
π
(t)
j,1

]
+

γ ∥b∥1
n

n∑
j=1

E
πνb

[
π
(t)
j,0

] ≥ γT

(
n

2
−
√

n

2π

)
. (34)

Returning to Equation (31), we will next bound

E
b

 T∑
t=1

∑
i:bi=0

E
πνb

π(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+
∑
i:bi=1

E
πνb

π(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0


=

n∑
i=1

E
b

 T∑
t=1

 E
πνb

π(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

1{bi=0} + E
πνb

π(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0

1{bi=1}

 .
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For each user i ∈ [n], we will therefore lower bound

E
b

 T∑
t=1

 E
πνb

π(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

1{bi=0} + E
πνb

π(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0

1{bi=1}


=

1

2

E
b

 E
πνb

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

 ∣∣∣∣∣∣ bi = 0

+ E
b

 E
πνb

 T∑
t=1

π
(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0

 ∣∣∣∣∣∣ bi = 1

 .

(35)

Let b−i ∈ {0, 1}n−1 denote the vector b with all components except the ith component. Moreover, to
simplify notation, let Pi,0 denote the distribution over outcomes (A1,X1, . . . ,AT ,XT ) ∈ ({0, 1}n×
{0, 1}n)T defined by first drawing b−i ∼ Unif

(
{0, 1}n−1

)
and then running the policy π on the

instance ν(0,b−i). Similarly, let Pi,1 denote the distribution over outcomes (A1,X1, . . . ,AT ,XT ) ∈
({0, 1}n × {0, 1}n)T defined by first drawing b−i ∼ Unif

(
{0, 1}n−1

)
and then running the policy π

on the instance ν(1,b−i). We can then rewrite Equation (35) as

1

2

E
i,0

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+ E
i,1

 T∑
t=1

π
(t)
i,0 −

γ

n

n∑
j=1

π
(t)
j,0


=

1

2

E
i,0

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+ E
i,1

(1− γ)T −
T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

 . (36)

Based on the constraints, we know that π
(t)
i,1 −

γ
n

∑n
j=1 π

(t)
j,1 ≥ 0 and π

(t)
i,0 −

γ
n

∑n
j=1 π

(t)
j,0 ≥ 0 with

probability 1. Therefore, by Markov’s inequality and the Bretagnolle–Huber inequality,

1

2

E
i,0

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+ E
i,1

(1− γ)T −
T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1


≥ T (1− γ)

4

Pi,0

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

 ≥ T (1− γ)

2


+ Pi,1

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

 <
T (1− γ)

2


≥ T (1− γ)

8
exp (−D (Pi,0,Pi,1)) .

In the following claim, we bound D (Pi,0,Pi,1) .

Claim E.1. D (Pi,0,Pi,1) ≤ 8ϵ2T.

Proof of Claim E.1. In this proof, we will use the following notation to distinguish the reward
distributions for each instance νb. For any vector of rewards xt = (xt,1, . . . , xt,n) ∈ {0, 1}n and
any choice of arms at = (at,1, . . . , at,n) ∈ {0, 1}n, we will use the notation fb

at
(xt) to denote the

probability that the platform receives rewards xt under instance νb after choosing arms at. We also

use f
(bi)
i,0 : {0, 1} → [0, 1] to denote the PMF of arm 0 for user i and f

(bi)
i,1 : {0, 1} → [0, 1] to denote
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the PMF of arm 1 for user i. In other words, f
(0)
i,0 is the Bern

(
1
2 + ϵ

)
PMF, f

(0)
i,1 is the Bern

(
1
2

)
PMF, f

(1)
i,0 is the Bern

(
1
2

)
PMF, and f

(1)
i,1 is the Bern

(
1
2 + ϵ

)
PMF. With this notation,

fb
at
(xt) =

n∏
i=1

f
(bi)
i,at,i

(xt,i) . (37)

Moving now to KL divergence between Pi,0 and Pi,1, let fi,0 : ({0, 1}n × {0, 1}n)T → [0, 1] be
the probability mass function of the distribution Pi,0, and define fi,1 similarly. By definition,

D (Pi,0,Pi,1) =
∑

(at,xt)
T
t=1

fi,0

(
(at,xt)

T
t=1

)
log

fi,0

(
(at,xt)

T
t=1

)
fi,1

(
(at,xt)

T
t=1

) . (38)

We will begin by simplifying the logarithm in Equation (38). Beginning with the numerator of
the logarithm, we have that

fi,0

(
(at,xt)

T
t=1

)
= Pi,0

[
(At,Xt)

T
t=1 = (at,xt)

T
t=1

]
=

1

2n−1

∑
b−i∈{0,1}n−1

Pπν(0,b−i)

[
(At,Xt)

T
t=1 = (at,xt)

T
t=1

]
.

Using the notation defined in Section 2 (Equation (1)), we have that

fi,0

(
(at,xt)

T
t=1

)
=

1
n−1

∑
b−i

fπν(0,b−i)

(
(at,xt)

T
t=1

)

=
1

2n−1

∑
b−i

T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)f
(0,b−i)
at (xt).

Applying Equation (37), we have that

fi,0

(
(at,xt)

T
t=1

)
=

1

2n−1

∑
b−i

T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)f
(0)
i,at,i

(xt,i)
∏
j ̸=i

f
(bj)
j,at,j

(xt,j)


where bj indicates the jth component of the vector b−i. Rearranging the product within the sum-

mation, we have that fi,0

(
(at,xt)

T
t=1

)
is equal to

1

2n−1

∑
b−i

 T∏
t=1

(
π(at | a1,x1, . . . ,at−1,xt−1)f

(0)
i,at,i

(xt,i)
) T∏

t=1

∏
j ̸=i

f
(bj)
j,at,j

(xt,j)

 .

Since
∏T

t=1 π(at | a1,x1, . . . ,at−1,xt−1)f
(0)
i,at,i

(xt,i) does not depend on b−i, we rearrange the sum-
mation over b−i as

fi,0

(
(at,xt)

T
t=1

)
=

1

2n−1

T∏
t=1

(
π(at | a1,x1, . . . ,at−1,xt−1)f

(0)
i,at,i

(xt,i)
)∑

b−i

T∏
t=1

∏
j ̸=i

f
(bj)
j,at,j

(xt,j). (39)
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Similarly,

fi,1

(
(at,xt)

T
t=1

)
=

1

2n−1

T∏
t=1

(
π(at | a1,x1, . . . ,at−1,xt−1)f

(1)
i,at,i

(xt,i)
)∑

b−i

T∏
t=1

∏
j ̸=i

f
(bj)
j,at,j

(xt,j). (40)

We now return to the logarithm in Equation (38). Based on Equations (39) and (40), much of
the numerator and denominator cancel out, leaving us with

log
fi,0

(
(at,xt)

T
t=1

)
fi,1

(
(at,xt)

T
t=1

) = log

T∏
t=1

f
(0)
i,at,i

(xt,i)

f
(1)
i,at,i

(xt,i)
=

T∑
t=1

log
f
(0)
i,at,i

(xt,i)

f
(1)
i,at,i

(xt,i)
.

We can therefore can write the KL divergence as

D (Pi,0,Pi,1) =
T∑
t=1

E
i,0

log f
(0)
i,At,i

(Xt,i)

f
(1)
i,At,i

(Xt,i)

 .

Moreover, by the law of total expectation, D (Pi,0,Pi,1) is equal to

T∑
t=1

(
E
i,0

[
log

f
(0)
i,0 (Xt,i)

f
(1)
i,0 (Xt,i)

∣∣∣∣∣ At,i = 0

]
P [At,i = 0] + E

i,0

[
log

f
(0)
i,1 (Xt,i)

f
(1)
i,1 (Xt,i)

∣∣∣∣∣ At,i = 1

]
P [At,i = 1]

)
. (41)

Inspecting each conditional expectation in this sum, we have that

E
i,0

[
log

f
(0)
i,0 (Xt,i)

f
(1)
i,0 (Xt,i)

∣∣∣∣∣ At,i = 0

]

=Pi,0 [Xt,i = 0 | At,i = 0] · log
f
(0)
i,0 (0)

f
(1)
i,0 (0)

+ Pi,0 [Xt,i = 1 | At,i = 0] · log
f
(0)
i,0 (1)

f
(1)
i,0 (1)

.

By Equation (27), for any instance νb such that bi = 0, the probability that Xt,i = 0 given that

At,i = 0 is 1
2 − ϵ = f

(0)
i,0 (0). Similarly, the probability that Xt,i = 1 given that At,i = 0 is

1
2 + ϵ = f

(0)
i,0 (1). Therefore,

E
i,0

[
log

f
(0)
i,0 (Xt,i)

f
(1)
i,0 (Xt,i)

∣∣∣∣∣ At,i = 0

]
= f

(0)
i,0 (0) log

f
(0)
i,0 (0)

f
(1)
i,0 (0)

+ f
(0)
i,0 (1) · log

f
(0)
i,0 (1)

f
(1)
i,0 (1)

= D
(
f
(0)
i,0 , f

(1)
i,0

)
. (42)

Similarly,

E
i,0

[
log

f
(0)
i,1 (Xt,i)

f
(1)
i,1 (Xt,i)

∣∣∣∣∣ At,i = 1

]
= D

(
f
(0)
i,1 , f

(1)
i,1

)
. (43)

Let Ni,0(T ) be the number of rounds that user i is shown arm 0 and let Ni,1(T ) be the number
of rounds that user i is shown arm 0, so Ni,0(T ) +Ni,1(T ) = T . Combining Equations (41), (42),
and (43), we have that

D (Pi,0,Pi,1) =

T∑
t=1

(
D
(
f
(0)
i,0 , f

(1)
i,0

)
Pi,0 [At,i = 0] +D

(
f
(0)
i,1 , f

(1)
i,1

)
Pi,0 [At,i = 1]

)
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= D
(
f
(0)
i,0 , f

(1)
i,0

)
E
i,0

[Ni,0(T )] +D
(
f
(0)
i,1 , f

(1)
i,1

)
E
i,0

[Ni,1(T )] .

Since f
(0)
i,0 is Bern

(
1
2 + ϵ

)
, f

(0)
i,1 is Bern

(
1
2

)
, f

(1)
i,0 is Bern

(
1
2

)
, and f

(1)
i,1 is Bern

(
1
2 + ϵ

)
,

D (Pi,0,Pi,1) ≤ 8ϵ2
(
E
i,0

[Ni,0(T )] + E
i,0

[Ni,1(T )]

)
= 8ϵ2T.

By Claim E.1, D (Pi,0,Pi,1) ≤ 8ϵ2T , so if we set ϵ =
√

1
8T , we have that

1

2

E
i,0

 T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

+ E
i,1

(1− γ)T −
T∑
t=1

π
(t)
i,1 −

γ

n

n∑
j=1

π
(t)
j,1

 ≥ T (1− γ)

8e
. (44)

Combining Equations (30), (31), and (44), we have that the regret is lower bounded by√
1

8T

(
nT (1− γ)

8e
+ γT

(
n

2
−
√

n

2π

)
− 2Tγ

n
E

b∼{0,1}n
[∥b∥1 (n− ∥b∥1)]

)
.

Since Eb∼{0,1}n [∥b∥1 (n− ∥b∥1)] =
n
4 (n− 1), we have that the expected regret is lower bounded by√

T

8

(
n(1− γ)

8e
+ γ

(
n

2
−
√

n

2π

)
− γ(n− 1)

2

)
≥
√

T

8

(
n

8e
− γ

(
n

8e
+

√
n

2π

))
.

Lemma 5.6. For all T ≥ 7(k−1)
n , the regret is lower bounded as follows:

inf
π∈Πn,k

sup
ν∈En,k

RT,1(π, ν) ≥
√

nT (k − 1)

16e
.

Proof. We begin by defining the worst-case instance ν where for each user i ∈ [n], their reward
distributions for the k arms are Bernoulli with means

µ1 = · · · = µn =

(
1

2
+ ϵ,

1

2
,
1

2
, . . . ,

1

2

)
where ϵ =

√
k−1
8nT . We will use the notation Ni,j(T ) to denote the number of rounds that user i is

shown arm j and Nj(T ) =
∑n

i=1Ni,j(T ) to denote the total number of rounds that all users are

shown arm j. This means that
∑k

j=1Nj(T ) = nT. Under instance ν, the optimal policy obtains a

reward of nT
(
1
2 + ϵ

)
. Meanwhile, an arbitrary policy π will obtain a reward of(
1

2
+ ϵ

)
E
πν

[N1(T )] +
1

2

n∑
j=2

E
πν

[Nj(T )] =
nT

2
+ ϵ E

πν
[N1(T )] .

Therefore, the regret of policy π on instance ν is

RT (π, ν) = ϵ

(
nT − E

πν
[N1(T )]

)
.
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Fix a policy π and let j∗ = argminj>2 Eπν [Nj(T )]. Since
∑k

j=2Nj(T ) ≤ nT, we have that

Eπν [Nj∗(T )] ≤ nT
k−1 . We now use j∗ to construct a second worst-case instance ν ′ where for each

user i ∈ [n],

µi,j =


1
2 + ϵ if j = 1
1
2 + 2ϵ if j = j∗

1
2 else.

Under instance ν ′, the optimal policy obtains a reward of nT
(
1
2 + 2ϵ

)
. Meanwhile, policy π

will obtain a reward of(
1

2
+ ϵ

)
E
πν′

[N1(T )]+

(
1

2
+ 2ϵ

)
E
πν′

[Nj∗(T )]+
1

2

∑
j ̸∈{1,j∗}

E
πν′

[Nj(T )] =
nT

2
+ϵ E

πν′
[N1(T )]+2ϵ E

πν′
[Nj∗(T )] .

Therefore,

RT (π, ν
′) = ϵ

(
2nT − E

πν′
[N1(T )]− 2 E

πν′
[Nj∗(T )]

)

= ϵ

2

k∑
j=1

E
πν′

[Nj(T )]− E
πν′

[N1(T )]− 2 E
πν′

[Nj∗(T )]


≥ ϵ E

πν′
[N1(T )] .

By Markov’s inequality,

RT (π, ν) +RT (π, ν
′) ≥ ϵnT

2

(
Pπν

[
N1(T ) ≤

nT

2

]
+ Pπν′

[
N1(T ) >

nT

2

])
,

so by the Bretagnolle–Huber inequality,

RT (π, ν) +RT (π, ν) ≥
ϵnT

4
exp (−D (Pπν ,Pπν′)) . (45)

Claim E.2. For ϵ < 1
5 , D (Pπν ,Pπν′) ≤ 4ϵ2nT

k−1 .

Proof of Claim E.2. In this proof, we will use the following notation to distinguish the reward
distributions for the instances ν and ν ′. For any vector of rewards xt = (xt,1, . . . , xt,n) ∈ {0, 1}n
and any choice of arms at = (at,1, . . . , at,n) ∈ [k]n, we use the notation fat(xt) (respectively, f

′
at
(xt))

to denote the probability that the platform receives rewards xt after choosing arms at under the
instance ν (respectively, ν ′). We also use fi,j : {0, 1} → [0, 1] (respectively, f ′

i,j : {0, 1} → [0, 1]) to
denote the PMF of arm j for user i. With this notation,

fat(xt) =

n∏
i=1

fi,at,i (xt,i) (46)

and

f ′
at
(xt) =

n∏
i=1

f ′
i,at,i (xt,i) . (47)

By definition,

D (Pπν ,Pπν′) =
∑

(at,xt)
T
t=1

fπν

(
(at,xt)

T
t=1

)
log

fπν

(
(at,xt)

T
t=1

)
fπν′

(
(at,xt)

T
t=1

) . (48)
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We will begin by simplifying the logarithm in Equation (48). Beginning with the numerator of
the logarithm and using the notation defined in Section 2 (Equation (1)), we have that

fπν

(
(at,xt)

T
t=1

)
= Pπν

[
(At,Xt)

T
t=1 = (at,xt)

T
t=1

]
=

T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)fat(xt).

By Equation (46), we have that

fπν

(
(at,xt)

T
t=1

)
=

T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)
n∏

i=1

fi,at,i (xt,i) . (49)

Similarly,

fπν′
(
(at,xt)

T
t=1

)
=

T∏
t=1

π(at | a1,x1, . . . ,at−1,xt−1)
n∏

i=1

f ′
i,at,i (xt,i) . (50)

We now return to the logarithm in Equation (48). Based on Equations (49) and (50), much of
the numerator and denominator cancel out, leaving us with

log
fπν

(
(at,xt)

T
t=1

)
fπν′

(
(at,xt)

T
t=1

) = log
T∏
t=1

n∏
i=1

fi,at,i (xt,i)

f ′
i,at,i

(xt,i)
=

T∑
t=1

n∑
i=1

log
fi,at,i (xt,i)

f ′
i,at,i

(xt,i)
.

We can therefore can write the KL divergence as

D (Pπν ,Pπν′) =
n∑

i=1

T∑
t=1

E
πν

[
log

fi,At,i (Xt,i)

f ′
i,At,i

(Xt,i)

]
.

Moreover, by the law of total expectation,

D (Pπν ,Pπν′) =

n∑
i=1

T∑
t=1

k∑
j=1

E
πν

[
log

fi,j (Xt,i)

f ′
i,j (Xt,i)

∣∣∣∣∣ At,i = j

]
Pπν [At,i = j] .

We know that for all j ̸= j∗, fi,j = f ′
i,j , which means that

D (Pπν ,Pπν′) =

n∑
i=1

T∑
t=1

E
πν

[
log

fi,j∗ (Xt,i)

f ′
i,j∗ (Xt,i)

∣∣∣∣∣ At,i = j∗

]
Pπν [At,i = j∗] . (51)

By further conditioning,

E
πν

[
log

fi,j∗ (Xt,i)

f ′
i,j∗ (Xt,i)

∣∣∣∣∣ At,i = j∗

]

=Pπν [Xt,i = 0 | At,i = j∗] · log fi,j∗ (0)

f ′
i,j∗ (0)

+ Pπν [Xt,i = 1 | At,i = j∗] · log fi,j∗ (1)

f ′
i,j∗ (1)

.

Under instance ν, the probability that Xt,i = 0 given that At,i = j∗ is fi,j∗ (0). Similarly, the
probability that Xt,i = 1 given that At,i = j∗ is fi,j∗ (1). Therefore,

E
πν0

[
log

fi,j∗ (Xt,i)

f ′
i,j∗ (Xt,i)

∣∣∣∣∣ At,i = j∗

]
= fi,j∗ (0) log

fi,j∗ (0)

f ′
i,j∗ (0)

+fi,j∗ (1)·log
fi,j∗ (1)

f ′
i,j∗ (1)

= D
(
fi,j∗ , f

′
i,j∗
)
. (52)
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Moreover, since fi,j∗ is the Bin
(
1
2 + ϵ

)
PMF and f ′

i,j∗ is the Bin
(
1
2 + 2ϵ

)
PMF, we have that

D
(
fi,j∗ , f

′
i,j∗

)
≤ 4ϵ2 for ϵ < 1

5 .

Combining Equations (51) and (52), we have that

D (Pπν ,Pπν′) =
n∑

i=1

T∑
t=1

D
(
fi,j∗ , f

′
i,j∗
)
Pπν [At,i = j∗]

≤ 4ϵ2
n∑

i=1

E
πν

[Ni,j∗(T )]

= 4ϵ2 E
πν

[Nj∗(T )]

≤ 4ϵ2nT

k − 1
.

Combining Equation (45) and Claim E.2, and setting ϵ =
√

k−1
4nT (in which case ϵ < 1

5 for nT >

7(k − 1)), we have that RT (π, ν0) + RT (π, ν1) ≥ 1
8e

√
nT (k − 1), so max {RT (π, ν0), RT (π, ν1)} ≥

1
16e

√
nT (k − 1).

F Proofs about the Formulation 2 regret bounds

In this section, we will use the following notation. For any distributions p1, . . . ,pn ∈ Pk−1, denote
the penalty attributed to user i as

Pi((pi)i∈[n]; γ, η) = η
k∑

j=1

max

{
0,

γ

n

n∑
i′=1

pi′,j − pi,j

}
.

The total penalty across all n users is

P ((pi)i∈[n]; γ, η) =
n∑

i=1

Pi((pi)i∈[n]; γ, η).

Next, let p∗
1, . . . ,p

∗
n ∈ Pk−1 be distributions that maximize the expected reward minus the penal-

ties. Then the expected regret of a policy π under this formulation is

T
n∑

i=1

(
p∗
i · µi − Pi((p

∗
i )i∈[n]; γ, η)

)
− E

[
n∑

i=1

T∑
t=1

(
Xi,t − Pi((πi(ht−1))i∈[n]; γ, η)

)]
.

Theorem 5.7. Let π be the policy of Penalty-UCB. Then RT,2(π, ν) = Õ(n
√
kT ).

Proof. Fix a timestep t ∈ [T ]

n∑
i=1

(p∗
i · µi − p

(t)
i · µi)− (Pi((p

∗
i )i∈[n]; γ, η)− Pi((p

(t)
i )i∈[n]; γ, η))

=
n∑

i=1

(p∗
i · µi − Pi((p

∗
i )i∈[n]; γ, η))− (p

(t)
i · µ̂(t)

i − Pi((p
(t)
i )i∈[n]; γ, η))− p

(t)
i · µi + p

(t)
i · µ̂(t)

i
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Algorithm 3 Penalty-UCB (defined by parameter δ)

Input: Failure probability δ > 0

1: Set Ni,j(0) = 0, ∀i ∈ [n], j ∈ [k]; µ̂
(0)
i = 0, ∀i ∈ [n]

2: for t ∈ {1, . . . , T} do
3: if t ∈ {1, . . . , k} then

4: Set p
(t)
i = et

5: else

6: Set
(
p
(t)
i

)
i∈[n]

= argmax

{
n∑

i=1
pi · µ̂(t−1)

i − η
∑k

j=1max
{ γ
n

∑n
i′=1 pi′,j − pi,j , 0

}}
7: Draw j

(t)
i ∼ p

(t)
i ∀i ∈ [n]

8: Receive reward r
(t)
i ∼ X

i,j
(t)
i

9: Ni,jti
(t) = Ni,jti

(t− 1) + 1, ∀i ∈ [n]

10: Ni,j(t) = Ni,j(t− 1), ∀i ∈ [n] and j ̸= jti

11: β
(t)
i,j =

√
log(2Tnk/δ)

Ni,j(t)
, ∀i ∈ [n], j ∈ [k]

12: µ̂t
i,j =

1
Ni,j(t)

t∑
τ=1

r
(τ)
i 1

{
j
(τ)
i = j

}
+ β

(t)
i,j , ∀i ∈ [n], j ∈ [k]

≤
n∑

i=1

(p∗
i · µi − Pi((p

∗
i )i∈[n]; γ, η))− (p∗

i · µ̂
(t)
i − Pi((p

∗
i )i∈[n]; γ, η))− p

(t)
i · µi + p

(t)
i · µ̂(t)

i

=
n∑

i=1

(p∗
i · µi − p∗

i · µ̂
(t)
i − p

(t)
i · µi + p

(t)
i · µ̂(t)

i )

By Claim C.1, p · µi ≤ p · µ̂(t)
i ∀i ∈ [n] and all p ∈ Rk

≥0

n∑
i=1

(p∗
i · µi − p

(t)
i · µi)− (Pi((p

∗
i )i∈[n]; γ, η)− Pi((p

(t)
i )i∈[n]; γ, η)) ≤

n∑
i=1

(p
(t)
i · µ̂(t)

i − p
(t)
i · µi)

≤
n∑

i=1

p
(t)
i · β(t)

i

Thus

RT ≤
T∑
t=1

∑
i∈[n]

p
(t)
i · β(t)

i

Let Fi,t−1 be the sigma algebra defined up to the choice of p
(t)
i and j

(t)′

i be a random variable

distributed as p
(t)
i | Fi,t−1 and conditionally independent from j

(t)
i,t , i.e. j

(t)′

i ⊥ j
(t)
i | Fi,t−1. Note

that by definition the following equality holds:

E
j
(t)
i ∼p

(t)
i

[β
i,j

(t)
i

] = E
j
(t)′
i ∼p

(t)
i

[β
i,j

(t)′
i

| Fi,t−1].

Consider the following random variables Ai,t = E
j
(t)′
i ∼p

(t)
i

[β
i,j

(t)′
i

| Fi,t−1] − β
i,j

(t)
i

(t). Note that

Mi,t =
∑t

s=1Ai,s is a martingale. Since |At| ≤ 2
√

2 log(nkT/δ), a simple application of Azuma-
Hoeffding implies that with probability at least 1− δ,
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RT =
T∑
t=1

∑
i∈[n]

p
(t)
i · β(t)

i ≤
T∑
t=1

∑
i∈[n]

β
(t)

i,j
(t)
i

+ n

√
T log

(
nkT

δ

)
log

(
1

δ

)

Now let us bound
∑
i∈[n]

T∑
t=i

β
(t)
i ,

∑
i∈[n]

T∑
t=i

β
(t)
i =

∑
i∈[n]

∑
j∈[k]

T∑
t=i

β
(t)
i,j 1

{
j
(t)
i = j

}
For fixed i, j

T∑
t=i

β
(t)
i,j 1

{
j
(t)
i = j

}
=
√

log(Tnk/δ)

Ni,j(T )∑
t=1

1/
√
t ≤ 2

√
Ni,j(T ) log(Tnk/δ)

Therefore

∑
i∈[n]

T∑
t=i

β
(t)
i ≤ 2

∑
i∈[n]

∑
j∈[k]

√
Ni,j(T ) log(Tnk/δ)

≤ 2
∑
i∈[n]

√
k
∑
j∈[k]

Ni,j(T ) log(Tnk/δ)

= 2
∑
i∈[n]

√
kT log(Tnk/δ)

= 2n
√
kT log(Tnk/δ)

Where the second line follows from the concavity of
√
· and the penultimate line follows from the

fact that
∑
j∈[k]

Ni,j(T ) = T .

G Proofs about the Formulation 3 regret bounds

Lemma 5.8. Let p∗ = (p∗
1, . . . ,p

∗
n) with p∗

i ∈ Pk−1 be the policy that maximizes reward2
(
p, ν; η

T , γ
)
.

Then
reward2

(
p∗, ν;

η

T
, γ
)
≥ reward3(π

∗, ν; η, γ).

Proof. First, for any arm j ∈ [k], we can exchange the expectation and the maximum in Equa-
tion (8) as follows:

E
π∗ν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
≥ max

{
γ

n

n∑
i′=1

E
π∗ν

[
p̂i′,j

]
− E

π∗ν
[p̂i,j ] , 0

}
. (53)

Moreover, we can rewrite the expected empirical distribution as follows:

E
π∗ν

[p̂i,j ] =
1

T

T∑
t=1

E
π∗ν

[
1{at,i=j}

]
=

1

T

T∑
t=1

E
π∗ν

[π∗
i (j | ht−1)] .
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Therefore, by Equation (53), we have that

E
π∗ν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
≥ max

{
1

T

T∑
t=1

(
γ

n

n∑
i′=1

E
π∗ν

[π∗
i′(j | ht−1)]− E

π∗ν
[π∗

i (j | ht−1)]

)
, 0

}
.

We can therefore bound reward3(π
∗, ν; η, γ) as follows:

reward3(π
∗, ν; η, γ)

=
n∑

i=1

 T∑
t=1

E
π∗ν

[µi · π∗
i (ht−1)]− η

k∑
j=1

E
π∗ν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
≤

n∑
i=1

k∑
j=1

(
T∑
t=1

µi,j E
π∗ν

[π∗
i (j | ht−1)] (54)

−ηmax

{
1

T

T∑
t=1

(
γ

n

n∑
i′=1

E
π∗ν

[π∗
i′(j | ht−1)]− E

π∗ν
[π∗

i (j | ht−1)]

)
, 0

})
. (55)

Define the history-independent policy p = (p1, . . . ,pn) such that

pi,j =
1

T

T∑
t=1

E
π∗ν

[π∗
i (j | ht−1)] .

This is a distribution because for any user i ∈ [n],

k∑
j=1

pi,j =
1

T

T∑
t=1

E
π∗ν

 k∑
j=1

π∗
i (j | ht−1)

 =
1

T

T∑
t=1

E
π∗ν

[1] = 1.

We rearrange Equation (55) to get that

reward3(π
∗, ν; η, γ)

≤
n∑

i=1

k∑
j=1

(
µi,j

T∑
t=1

E
π∗ν

[π∗
i (j | ht−1)]

−ηmax

{
γ

n

n∑
i′=1

1

T

T∑
t=1

E
π∗ν

[π∗
i′(j | ht−1)]−

1

T

T∑
t=1

E
π∗ν

[π∗
i (j | ht−1)]

)
, 0

}

=
n∑

i=1

k∑
j=1

(
Tµi,jpi,j − ηmax

{
γ

n

n∑
i′=1

pi′,j − pi,j , 0

})
.

By definition of p∗, this means that

reward3(π
∗, ν; η, γ) ≤

n∑
i=1

k∑
j=1

(
Tµi,jp

∗
i,j − ηmax

{
γ

n

n∑
i′=1

p∗i′,j − p∗i,j , 0

})
= reward2

(
p∗, ν;

η

T
, γ
)
.
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Lemma 5.9. Let π be any policy such that πi(t | ht−1) = 1 for all t ≤ k and i ∈ [n]. For any
instance ν,

reward2

(
π, ν;

η

T
, γ
)
≤ reward3(π, ν; η, γ) + ηnk(γ + 1)

√
10 log T

T
.

Proof. First, for any arm j ∈ [k], we can exchange the expectation and the maximum in Equa-
tion (7) as follows:

1

T

T∑
t=1

E
πν

[
max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

}]

≥ E
πν

[
max

{
1

T

T∑
t=1

(
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1)

)
, 0

}]

≥ max

{
E
πν

[
1

T

T∑
t=1

(
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1)

)]
, 0

}
.

Using the fact that Eπν [πi(j | ht−1)] = Eπν [1{At,i=j}], we have that

1

T

T∑
t=1

E
πν

[
max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

}]

≥ max

{
E
πν

[
1

T

T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

)]
, 0

}
. (56)

Next, we use the fact [4] that

max

{
E
πν

[
1

T

T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

)]
, 0

}

≥ E
πν

[
max

{
1

T

T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

)
, 0

}]

−

√√√√1

2
·Var

(
1

T

T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

))

= E
πν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
−

√√√√ 1

2T 2
·Var

(
T∑
t=1

(
γ

n

n∑
i′=1

1{At,i′=j} − 1{At,i=j}

))
. (57)

Let Yt = γ
n

∑n
i′=1 1{At,i′=j} − 1{At,i=j} and define the martingale difference sequence Dt :=

t∑
τ=1

(Yτ − E[Yτ ]). Then Var[DT ] = Var
[∑T

t=1 Yt

]
and Dt is martingale with bounded increments

|Dt − Dt−1| ≤ 2(γ + 1). By assumption πi(t | ht−1) = 1 for all t ≤ k and i ∈ [n] so D0 = 0
deterministically. Let B be the event that |DT | ≤ (γ+1)

√
8T log T . Applying Azuma-Hoeffding for

martingales we know that Pr[Bc] ≤ 1
T . Moreover, with probability 1, |DT | ≤ 2T (γ +1). Therefore,

by the law of total variance and Popoviciu’s inequality,

Var

[
T∑
t=1

Yt

]
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=Var[DT ]

=Var[DT | B] Pr[B] + Var[DT | Bc] Pr[Bc]

+
(
E[DT | B]2 + E[DT | Bc]2 − 2E[DT | B]E[DT | Bc]

)
Pr[B] Pr[Bc]

≤Var[DT | B] +
1

T

(
Var[DT | Bc] + E[DT | B]2 + E[DT | Bc]2 − 2E[DT | B]E[DT | Bc]

)
≤ 2T (γ + 1)2 log T + 17T (γ + 1)2

≤ 19T (γ + 1)2 log T.

Combining this fact with Equations (56) and (57), we have that

1

T

T∑
t=1

E
πν

[
max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

}]

≥ E
πν

[
max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}]
−
√

10(γ + 1)2 log T

T
. (58)

As a result,

reward2

(
π, ν;

η

T
, γ
)

= E
πν

 n∑
i=1

 T∑
t=1

µi · πi(ht−1)−
η

T

k∑
j=1

max

{
γ

n

n∑
i′=1

πi′(j | ht−1)− πi(j | ht−1), 0

}
≤ E

πν

 n∑
i=1

 T∑
t=1

µi · πi(ht−1)− η

k∑
j=1

max

{
γ

n

n∑
i′=1

p̂i′,j − p̂i,j , 0

}+ ηnk(γ + 1)

√
10 log T

T

=reward3(π, ν; η, γ) + ηnk(γ + 1)

√
10 log T

T
.

Theorem 5.10. Let π be the policy played by Algorithm 3. Then the regret is bounded as

reward3(π
∗, ν; η, γ)− reward3(π, ν; η, γ) = Õ

(
n
√
kT +

ηnk(1 + γ)√
T

)
.

Proof. Let p∗ be the policy that maximizes reward2
(
p, ν; η

T , γ
)
. We expand the regret as

reward3(π
∗, ν; η, γ)− reward3(π, ν; η, γ)

= reward3(π
∗, ν; η, γ)− reward2

(
p∗, ν;

η

T
, γ
)
+ reward2

(
p∗, ν;

η

T
, γ
)
− reward3(π, ν; η, γ)

≤ reward2

(
p∗, ν;

η

T
, γ
)
− reward3(π, ν; η, γ) (Lemma 5.8)

≤ reward2

(
p∗, ν;

η

T
, γ
)
− reward2

(
π, ν;

η

T
, γ
)
+ ηnk(γ + 1)

√
10 log T

T
(Lemma 5.9)

=O

(
n
√
kT log (Tnk) +

√
T log2(Tnk) + ηnk(γ + 1)

√
10 log T

T

)
. (Theorem 5.7)
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(a) All User Types (b) Action and Crime Content Lovers

Figure 4: Polarization Tax: Utility Difference as function γ and η

H Additional information about the experiments

Figure 4 plots the change in the additive utility loss

1

n

n∑
i=1

µi · p∗
i −

1

n

n∑
i=1

µi · pγ;η
i

for all genres and the entire population of users described in Section 6.1.
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