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Abstract

In this paper, we study the dynamics of the susceptible-infected-recovered (SIR) model on a
network with community structure, namely the stochastic block model (SBM). As usual, the SIR
model is a stochastic model for an epidemic where infected vertices infect susceptible neighbors
at some rate η and recover at rate γ, and the SBM is a random graph model where vertices
are partitioned into a finite number of communities. The connection probability between two
vertices depends on their community affiliation, here scaled in such a way that the average
degrees have a finite limit as the network grows. We prove laws of large numbers (LLN) for the
trajectory of the epidemic to a system of ordinary differential equations over any time horizon
(finite or infinite), including in particular a LLN for the final size of the infection.

Our proofs rely on two main ingredients: (i) a new coupling of the SIR epidemic and the
randomness of the SBM, revealing a vector valued random variable that drives the epidemic
(related to what is usually called the “force of the infection” via a linear transformation), and
(ii) a novel technique for analyzing the limiting behavior of the infinite time horizon for the
infection, using the fact that once the infection passes the herd immunity threshold it dies out
quickly and has a negligible impact on the overall size of the infection.

1 Introduction
The susceptible-infected-recovered (SIR) model was introduced by Kermack and McKendrick in
1927, and is a simple model used to describe the behavior of a disease in a closed, finite population
Kermack and McKendrick [1927]. In the simplest version of the model, the population is divided
into three compartments – susceptible, infected, and recovered – whose sizes can be thought of as
deterministic, time-varying, continuous variables s = s(t), i = i(t), r = r(t) adding up to one. The
dynamics of the infection are governed by constants η and γ, and described by a well-known system
of differential equations representing a “flow of individuals” from S to I and I to R at rates ηsi and
γi, respectively. In the slightly more realistic stochastic setting first considered by Bartlett [1949],
the population consists of n individuals again divided into compartments of susceptible, infected,
and recovered individuals. The time dynamics of the model are now stochastic, with infected
individuals infecting susceptible individuals at rate η/n, and infected individuals recovering at
rate γ. As n becomes large, the stochastic model is well approximated by the deterministic one,
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mathematically expressed as a law of large numbers (LLN). This implies that on any bounded time
horizon, the fraction of susceptible, infected, and recovered individuals converge to deterministic
functions s(t), i(t), and r(t) given by the solutions of the usual differential equations, see, e.g.,
Von Bahr and Martin-Löf [1980] for the study of a somewhat related version in discrete time (the
so-called Reed-Frost model) with a generalization to the Kermack-McKendrick SIR model, or the
excellent review article Darling and Norris [2008] for a short, streamlined proof based on Gronwall’s
inequality and Doob’s L2-inequality.

It is well known that the homogeneity assumption inherent in the original Kermack and McK-
endrick model is not realistic in practice, as contact rates between individuals vary by age and
other demographic factors Jacquez et al. [1988]. While this can be, to some extent, addressed
by creating more compartments stratified by these demographic factors, another property which a
realistic model should take into account is the underlying graph structure of the contact network.
Indeed, it is well known that the underlying graph structure plays a crucial role in the dynamics
of the infection throughout the graph. As such, there has been interest in studying the SIR model
on various random graphs including the Erdös-Rényi graph [Ball and Britton, 2022; Neal, 2003],
graphs with a given degree sequence (configuration models) [Barbour and Reinert, 2013; Bohman
and Picollelli, 2012; Decreusefond et al., 2012; Janson et al., 2014], and graphs with local household
structure [Ball et al., 2010; House, 2012] or tunable local clustering, Britton et al. [2008].

In this paper, we consider the SIR epidemic on the stochastic block model (SBM), a network
model with community structure. In the SBM, nodes are partitioned into K communities and the
distribution of edges between vertices is determined by a K × K matrix and is dependent on the
group membership of the endpoints Holland et al. [1983]. The SBM has appeared independently in
many contexts in the statistics, computer science, and mathematics literature and there are many
examples of networks with known community structure [Bollobás et al., 2007; Bui et al., 1987;
Girvan and Newman, 2002; Holland et al., 1983]. In addition there is a vast literature on the use
of the stochastic block model in community detection problems [Abbe, 2018; Lee and Wilkinson,
2019].

Despite its widespread study and use, somewhat surprisingly unlike other well-studied graph
models, no rigorous work has established analogous law of large numbers results for a limiting
system of ordinary differential equations for the stochastic SIR epidemic on the SBM. The rigorous
derivation of these is the goal of the present paper.

Our work is motivated and inspired by the proofs of LLNs for the Erdös-Rényi graph G(n, p)
and variations of G(n, p) involving the dropping and rewiring of edges as the infection spreads, as
well as LLNs for graphs of a given degree sequence [Ball and Britton, 2022; Janson et al., 2014;
Neal, 2003]. Our work differs from these in one important aspect, in all these works, the dynamics
of the infection process are primarily driven by one random variable, often referred to as the force
of the infection. For G(n, p) and its variants, this random variable is, roughly speaking, the number
of edges between infected and susceptible vertices, and for the configuration model it is the number
of not-yet explored or matched edges emanating from infected vertices.

In contrast to the configuration model where the resulting limiting equations were derived
heuristically before being established mathematically rigorously, to our knowledge, there has been
no conjecture for the correct differential equations describing a LLN for SIR on the SBM.

To address this, we build on ideas from Ball and Britton [2022] and Janson, Luczak, and
Windridge [2014]. First, we couple the randomness of the SBM and that of SIR by only exploring
edges in the graph when they attempt to spread the SIR infection. More precisely, once a vertex
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gets infected, we draw its degree (with a distribution that depends on the community type of
the infected vertex), and then attach what we call active half-edges to it, each endowed with an
exponential clock governing future infection events. Whenever these clocks click, we determine the
label of the other endpoint, and “test” whether that endpoint is still susceptible before spreading
the infection to a new vertex. This representation then naturally leads us to consider a LLN for
three vector valued random variables: 1) the number of susceptible vertices in each community, 2)
the number of infected vertices in each community and, 3) the number of not yet explored, active
half-edges emanating from vertices of each community type.

Having derived this representation, both the heuristic derivation and the mathematical proof
of a LLN for finite time horizons is straightforward, with proofs and quantitative error bounds
following from standard techniques involving Gronwall’s inequality and Doob’s L2-inequality as,
e.g., laid out in Darling and Norris [2008]. However, while these bounds are uniform for all times
in a finite time interval [0, t0], the size of the error bounds turn out to be exponential in t0, which
prevents us from using the same techniques to prove a law of large numbers for an infinite time-
horizon and, in particular, for what is usually called the final size of the infection.

The standard way of overcoming such a challenge is to apply a global time rescaling to the
epidemic so that the entire epidemic happens on a finite time horizon [Daley and Gani, 1999;
Ethier and Kurtz, 1986; Kiss et al., 2017]. However in the case of the SBM, because the infection
rate differs depending on the community, it is unclear how to appropriately apply such a global time
rescaling. To overcome this problem, we develop a new technique to prove the infinite time law of
large numbers. This proof technique is based on the observation that the infection must eventually
pass the herd immunity threshold and that after this point, the infection dies out quickly. Thus,
for a large enough time t1 after the infection has passed herd immunity, any outbreak that occurs
after time t1 has a negligible effect on the final state of the epidemic at time infinity (and, in fact,
for all times between t1 and infinity). We believe that this technique should be applicable in much
more generality than traditional time rescaling techniques allowing for the analysis of more models
but will also greatly simplify proofs of the final size LLN for many models.

We close this introduction by briefly mentioning two alternative methods which could at least
in principle be used to derive some of the results established in this paper, even though to our
knowledge, they have not yet been applied to the stochastic block model. One of these methods
involves the theory of local graph limits [Alimohammadi et al., 2023; Cocomello and Ramanan,
2023], which can be used to study the final size of an epidemic starting from a constant fraction of
initially infected vertices, provided these are chosen uniformly at random. Another method involves
the method of forward and backward branching processes, see, e.g., Barbour and Reinert [2013].
We will discuss these and other related works in Section 2.4 below, where we put our work into the
context of the existing literature.

This paper is organized as follows. In Section 2 we define our model and state our main results,
including the laws of large numbers for both the finite and infinite time horizon. In Section 3, we
define a multi-graph version of the SBM and then couple the SIR epidemic to the randomness of this
model. As, e.g., in the case of the multi-graph vs. simple graph version of the configuration model,
conditioning the multi-graph version of the SBM to be simple will give back the original simple
graph version of the model, allowing us to transfer our results for the multi-graph model to the
original one. We will also give the heuristic derivation of the LLN in this section. In Section 4, we
prove the law of large numbers in the finite time case where the number of initially infected vertices
grows linearly with n, and in Section 5 we extend the results from Section 4 to the infinite time
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horizon. Section 6 extends all results to the case where there is only o(n) many initially infected
vertices, with some of the more technical proofs deferred to an appendix. In Section 7, we discuss
the implications of our result, including a discussion of our notion of herd-immunity and its relation
to the standard notion of the force of an infection, as well as an alternative heuristic derivation
of our results using what is often called the pair-approximation. We kept Section 7 essentially
self-contained, so after reading the summary of our results in Section 2 and possibly Section 3, the
reader not interested in technical details might want to jump to the discussion section.

Acknowledgements: We are grateful to Tom Britton and Remco Van der Hofstad for their
insightful discussions and for encouraging us to pursue this write-up, particularly in the early
stages of developing the concept of using herd immunity to prove a law of large numbers for the
epidemic’s final phase. Christian Borgs also extends thanks to the Simons Institute for the Theory
of Computing for their support during the fall semester of 2022, and all three authors appreciate
the Institute’s hospitality during that time. Lastly, Karissa Huang acknowledges support from the
National Science Foundation under grant DGE 2146752.

2 Notation and Statements of Results

2.1 Notation

Throughout this paper, we use n to denote the number of individuals or number of vertices in the
contact graph. We use p→ for convergence in probability as n → ∞, and we say that an event holds
with high probability if it holds with probability tending to 1 as n → ∞. For a positive integer
K, we use [K] to denote the set [K] = {1, . . . , K}. We usually use bold letters for vectors, and if
a = (ak)k∈K , we use diag(a) for the diagonal matrix with entries (diag(a))kk = ak. As usual, we
will use N to denote the set of natural numbers, and N0 to denote the set of non-negative integers.

2.2 Model Definition

We consider an SIR epidemic spreading on a contact network of n individuals with a community
structure modeled by a stochastic block model with K communities. To define the model, we first
assign a label k(v) ∈ [K] to each individual in V = [n], leading to a labeled set V = (V, k(·)) of n
vertices with labels in [K]. In a second step, we connect vertices at random, with the probability
of an edge between two vertices u and v depending on the community labels k(u) and k(v). This
leads to the following formal definition.

Definition 2.1 (Stochastic Block Model (SBM)). Let K ∈ N, let V = (V, k(·)) be a set of vertices
with labels in [K], and let W be a symmetric, non-negative matrix such that each row contains at
least one non-zero element. We say that a random graph G = (V, E) is drawn from a stochastic
block model with affinity matrix W , and write G ∼ SBM(V , W ), if a pair of vertices {u, v} is
joined by an edge with probability 1

nWk(u)k(v) independently for all
(n

2
)

pairs {u, v}. We will use nk

to denote the number of vertices with label k, i.e. nk = ∑
v∈V 1 {k(v) = k}.

Remark 2.2. i) Note that the assumption that each row Wk,· of W contains at least one non-zero
elements can be made without loss of generality, since otherwise vertices of color k would always be
isolated, in which case we can just delete them from the graph G.
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ii) The SBM is often defined by choosing the labels of the vertices i.i.d. from some random
distribution ρ = (ρk)k∈[K] over [K]. The results of this paper can easily be formulated for this
version of the SBM as well; in fact, all our results hold for an arbitrary label distribution over [n],
as long as w.h.p., for all k ∈ [K] the ratio nk/n stays bounded away from 0 uniformly in n.

In order to analyze SIR epidemic on the stochastic block model, it will be convenient to first
study it on a slightly different model which allows for self-loops and multiple edges. We call it the
Poisson Stochastic Block Model (PSBM).

Definition 2.3 (Poisson Stochastic Block Model (PSBM)). Let V and W be as in Definition 2.1.
We say that a random multi-graph G is drawn from a Poisson Stochastic Block Model, G ∼
PSBM(V , W ), if each pair of vertices {u, v} (for u, v ∈ [V ]) is joined by Auv edges, and each
vertex v has Avv self-loops, where Auv = Avu ∼ Pois

(
Wk(v)k(v)/n

)
independently for all v ≤ u.

We use Dk

Dk =
∑

ℓ∈[K]
Wkℓ

nℓ

n
(1)

to denote the average degree of a vertex of type k.

Remark 2.4. The degree of a vertex v in G ∼ PSBM(V , W ) is distributed according to dv ∼
Pois(Dk(v)), and its degree into the vertices with community label ℓ is Poisson distributed with
mean Wk(v)ℓ

nℓ
n . Setting

pk→ℓ = 1
Dk

Wkℓ
nℓ

n
, (2)

we furthermore can couple these in such a way that conditioned on dv, the degree into a community
with label k can be obtained by choosing labels k1, . . . , kdv i.i.d. with probability pk(v)→ki

and setting
the degree into community ℓ as the number of times ℓ will appear among k1, . . . , kdv .

Next, we formally define an SIR infection on a general multi-graph G, introducing at the same
time some of the notation used later. Denote the number of edges between two vertices u and v
by Auv. The SIR model is then a continuous-time Markov process whose state at time t is given
by the sets of susceptible, infected, and recovered vertices, V S(t), V I(t) and V R(t), respectively
(with their union being equal to the set of vertices V in G). Starting from an initial state V S(0),
V I(0), and V R(0) at time t = 0, at time t > 0 each u ∈ V I(t) then infects a susceptible vertex v at
rate ηAuv, and recovers at rate γ, independently for all vertices u ∈ V I(t). We adopt the standard
assumption that our processes are càdlàg (or rcll), so that when vertex v gets infected at time t,
v ∈ V S(t′) for t′ < t and v ∈ V I(t′) ∪ V R(t′) for t′ ≥ t (and similarly for the recovery of a vertex u
at time t).

We will use the notation

V S
k (t) = V S(t) ∩ Vk, Sk(t) = |V S

k (t)| and S(t) = |V S(t)|.

We define V I
k (t), Ik(t) and I(t), and V R

k (t), Rk(t) and R(t) analogously.

2.3 Statements of Results

In this paper, we separately discuss two types of initial conditions: one in which the number of
initially infected vertices is proportional to n, and one where it is o(n).
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We start with the former, for which we will establish laws of large numbers for the time evolution
as well as the final size of the infection. We will need the following assumptions on the initial state
of the infection:
Assumption 2.5. As n → ∞,

i) 1
nSk(0) p→ sk(0) > 0 for all k ∈ [K],

ii) 1
nIk(0) p→ ik(0) ≥ 0 for all k ∈ [K].

We will assume that the initially infected and recovered vertices are chosen at random, possibly
depending on their community labels, but not on the realization of SBM(V , W ) or PSBM(V , W ).

We are making the assumption on the random choice of initially infected and recovered ver-
tices to avoid trivial examples, like an initial set of infected vertices that consists of a connected
component in G (in which case all that happens is the independent recovery of all initially infected
vertices). Note that equivalently, we could assume an arbitrary starting configuration V S(0), V I(0),
and V R(0), and draw G ∼ SBM(V , W ) or G ∼ PSBM(V , W ) independently of this starting con-
figuration.
Theorem 2.6 (Law of Large Numbers for Finite Time). Consider the SIR epidemic on G ∼
PSBM(V , W ) or G ∼ SBM(V , W ), with the initial state of the infection obeying the conditions
from Assumption 2.5. Let sk(t), ik(t), and xk(t) be the unique solutions to

dsk(t)
dt

= −ηsk(t)
∑

ℓ

xℓ(t)Wℓk, (3)

dxk(t)
dt

= −(η + γ)xk(t) + ηsk(t)
∑

ℓ

xℓ(t)Wℓk, (4)

dik(t)
dt

= −γik(t) + ηsk(t)
∑

ℓ

xℓ(t)Wℓk, (5)

with initial conditions sk(0) and xk(0) = ik(0), and let 0 < t0 < ∞, and let ε > 0 be arbitrary.
Then as n → ∞,

P
(

sup
t∈[0,t0]

∥∥∥∥( 1
n
S(t), 1

n
I(t)

)
− (s(t), i(t))

∥∥∥∥
2

> ε

)
→ 0, (6)

where S(t) is the vector (S1(t), . . . , SK(t)), and similarly for I(t), s(t) and i(t).
Remark 2.7. i) Assumption 2.5 does not have any condition on the set of initially recovered
vertices, and our theorem does not state any LLN for 1

nRk(t). However, if we add the assumption
that for all k ∈ [K] , nk/n converges in probability to some ρk, we get the convergence of Rk(t)/n =
nk/n − Sk(t)/n − Ik(t)/n to rk(t) = ρk − sk(t) − ik(t) for free.

ii) Note that the assumptions of the theorem include the case where i(0) = 0, in which case the
solution of the differential equations are constant, i(t) ≡ 0 and s(t) ≡ s(0) for all t. Note, however,
that this does not imply that the actual infection dies out. Indeed, if I(0)

n → 0 but I(0) → ∞ (and
the basic reproduction number, R0, is larger than one), the infection will eventually take off, see
Theorem 2.13 below. It just takes an amount of time which diverges as n → ∞! By contrast,
1
n(S(t) − S(0)) → 0 and 1

nI(t) → 0 uniformly for t on any bounded time interval, consistent with
the statements of the theorem.
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The above remark raises the question of whether the bounds of Theorem 2.6 can be generalized
to non-compact time intervals if we assume that i(0) ̸= 0. Theorem 2.8 below shows that this is
indeed possible. It in particular gives a law of large numbers for the final state of the infection.

Before stating the theorem, we note that for fixed n, the infection will eventually die out, leaving
just a set of vertices which never got infected (and hence are still susceptible) and a set of vertices
that got infected at some point, but eventually recovered. The number of vertices in the latter
set is usually referred to as the final size of the infection. Since the two sets are complements of
each other, the final size of the infection (for the individuals in community k) is therefore equal to
Ik(0) + Sk(0) − Sk(∞). Under the convergence assumption for the intitial state, Assumption 2.5,
a law of large numbers for the final size of the infection is therefore equivalent to a law of large
numbers for

S(∞) = lim
t→∞

S(t).

The next theorem generalizes Theorem 2.6 to unbounded time intervals, and in particular relates
the quantity S(∞) to the limit t → ∞ of s(t), where s(t) and x(t) are the solutions of the differential
equations Eq. (3) and Eq. (4). Note that the existence of the limit limt→∞ s(t) follows from the
monotonicity of sk(t) for all k, which in turn is a consequence of Eq. (3).

Theorem 2.8. Under the additional assumptions that W is irreducible and i(0) > 0 as n → ∞,
the statement of Theorem 2.6 holds uniformly for all t ∈ R+,

P
(

sup
t∈[0,∞)

∥∥∥∥( 1
n
S(t), 1

n
I(t)

)
− (s(t), i(t))

∥∥∥∥
2

> ε

)
→ 0, (7)

so in particular
P
(∥∥∥∥ 1

n
S(∞) − s(∞)

∥∥∥∥
2

> ε

)
n→∞−−−→ 0.

where s(∞) = limt→∞ s(t).

The second statement of Theorem 2.8 gives a law of large numbers for the final size of the
infection when the number of initially infected vertices is a constant fraction of the size of the
graph. In Theorem 2.13, we consider the law of large numbers for the regime where the number of
initially infected vertices is o(n).

We start with the simple case of a single, initially infected vertex. We need some definitions.

Definition 2.9 (Poisson Multi-type Branching Process). Consider a K × K matrix M with non-
negative entries, and the multi-type, discrete time Poisson branching process where vertices of type
k have Pois(Mkℓ) children of type ℓ. We will use BPk(M) to denote the distribution of the labeled
tree corresponding to this branching process starting from a root of type k.

Definition 2.10 (Infection Tree for arbitrary graphs). Consider the SIR epidemic on an arbitrary
graph G starting from a single vertex v in G. We use TG,v(t) to denote the infection tree on G at
time t, defined as the tree on all vertices that were infected at or before time t (with labels indicating
whether they are currently infected or recovered), and an edge between two vertices if it is an edge
in G along which the infection has spread. If G carries community labels in some set [K], we add
these labels as a second label to the vertices in TG,v(t).

We consider two special cases: the case where G ∼ SBM(V , W ) for an infection starting from
single vertex v chosen uniformly at random from all vertices with label k, in which case we denote
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the infection tree by T SBM
k (t), and the case where the infection starts at the root of a Poisson

branching process BPk(M), in which case we denote the infection tree by T
BP(M)

k (t), or simply by
T BP

k (t) when M is clear from the context.

Remark 2.11. It is well known and easy to see that T
BP(M)

k (∞) can be represented as a standard,
discrete time branching process as follows: starting from a vertex v of type k(v), choose an expo-
nentially distributed recovery time Tv ∼ exp(γ) and then choose Pois(pTv Mk(v)ℓ) children of type ℓ,
where pTv = 1 − e−ηTv . (To see this, just note that pTv is the probability that an Exp(η) distributed
infection clock clicks before the recovery clock of the vertex v trying to infect its children runs out).

As a consequence, the expected number of children of v with label ℓ in T
BP(M)

k (∞) is

Ck(v)ℓ = ETv [pTv Mk(v)ℓ] = η

η + γ
Mk(v)ℓ.

Under the assumption that M is irreducible, standard branching process results then imply that
the probability that the infection on BPk(M) survives forever is non-zero if and only if the largest
eigenvalue1, λmax(C), is larger than 1. Defining

πk = P
(∣∣∣T BP(M)

k (∞)
∣∣∣ = ∞

)
and R0 = λmax

(
η

η + γ
M

)
(8)

we therefore have that πk > 0 if and only if R0 > 1.

Lemma 2.12. Consider the SIR epidemic on G ∼ PSBM(V , W ) or G ∼ SBM(V , W ), with the
initial state of the infection obeying the conditions from Assumption 2.5, and assume that V I(0)
consists of a single vertex v with label k. Let M be the matrix with matrix elements

M = Wdiag(s(0)).

Then there exists a sequence Nn → ∞ as n → ∞ and a coupling of TG,v(t) and T
BP(M)

k (t) such
that

P
(
TG,v(t) = T

BP(M)
k (t) for all t such that |T SBM

k (t)| ≤ Nn

)
→ 1 as n → ∞.

Lemma 2.12 allows us to relate the initial behavior of the epidemic to the behavior of the
continuous time branching process T

BP(M)
k (t). In particular, if R0 ≤ 1, then the branching process

T
BP(M)

k (t) dies out eventually, and any outbreak on the original graph will be of constant size, and
if R0 > 1 then T

BP(M)
k (t) survives forever with probability πk, and there will be an outbreak of

size at least Nn on the original graph with asymptotic probability πk.
In fact, it turns out that with high probability, the outbreak will be either of constant size, or of

order Θ(n). The next theorem makes this precise, and also gives the relative size of an outbreak if
it occurs. More precisely, it shows that conditioned on there being a large outbreak, the probability
that a random vertex in Vk gets eventually infected is given by the survival probability of what is
known as the backward branching process, see, e.g., [Barbour and Reinert, 2013; Barbour, 2014;
Diekmann and Heesterbeek, 2000].

1Note that in general, M can have complex eigenvalues - but by the Perron-Frobenius Theorem, it has a single,
non-degenerate eigenvalue which is positive and equal to the largest eigenvalue in absolute value., i.e., the spectral
radius. We trust that the use of λmax(C) for this eigenvalue does not cause any confusion.
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In our context, the backward branching process is the Poisson branching process BPk(C) with
transition matrix

C = η

η + γ
Wdiag(s(0)), (9)

and its survival probability is
θk = P (|BPk(C)| = ∞) . (10)

Theorem 2.13. Assume that W is irreducible and consider the SIR epidemic on G ∼ SBM(V , W )
or G ∼ PSBM(V , W ) obeying Assumptions 2.5 with i(0) = 0 and assume further that

1 −
∏
k

(1 − πk)Ik(0) p→ π

for some π ∈ [0, 1]. Then I(0)+S(0)−S(∞)
n , converges in probability to a random vector which is equal

to diag(θ)s(0) with probability π and equal to 0 with probability 1 − π.

Note that the theorem covers both the case where the vector (Ik(0))k∈[K] has a finite limit,
and the case where I(0) → ∞. In the first case, π < 1, while in the second, we have that π = 1
(provided R0 > 1), leading to an outbreak with probability tending to 1 as n → ∞.

As a consequence of Lemma 2.12 and Theorem 2.13 we have the following corollary, which in
particular implies that w.h.p., the epidemic starting from a single vertex either dies out after only
infecting a finite number of vertices, or grows to size Θ(n).

Corollary 2.14. Consider the setting from Theorem 2.13, with V I(0) consisting of a single infected
vertex of label k, and let Nn be an arbitrary sequence of integers with Nn → ∞ and Nn/n → 0 as
n → ∞. Then the following hold:

i) The probability that S(0) − S(∞) > Nn converges to πk.
ii) If R0 ≤ 1, the final size S(0) − S(∞) converges in distribution to the size of T SBM

k (∞),
showing in particular that the limiting distribution of S(0) − S(∞) has exponentially decaying tails
if R0 < 1.

iii) Assume R0 > 1. When conditioned on being at most Nn, the final size converges in dis-
tribution to |T SBM

k (∞)| conditional on extinction, showing in particular that the conditional final
size distribution has exponentially decaying tails.

iv) If R0 > 1 and we condition on the event that the final size is at least Nn, then S(0)−S(∞)
n ,

converges in probability to diag(θ)s(0), showing in particular that with high probability, the final
size of the infection is of order Θ(n) if we condition on it being at least Nn.

Remark 2.15. Since W is symmetric, even if it is not irreducible, it can be decomposed into
isolated irreducible sub-components. As long as Assumption 2.5 is true in each sub-component,
then Theorem 2.8 and Theorem 2.13 can be applied separately in each sub-component.

2.4 Related Work

In this section we place our results and methods in the context of the existing literature. As
discussed in the introduction, for both G(n, p) and the configuration model, the dynamics of the
infection are primarily driven by a scalar-valued random variable determining the force of infection.
For G(n, p) the force of the infection is the same for all susceptible vertices and proportional to the
number of active half-edges, while for the configuration model, the force of the infection on vertices
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of degree d depends on d and is proportional to d times the number of active half-edges. Due to
this fact, for G(n, p) and the configuration model, a global time-rescaling can be applied to the
stochastic epidemic such that the entire epidemic happens over the course of a finite time horizon.
While our methods are inspired by [Ball and Britton, 2022; Janson et al., 2014; Neal, 2003], such
a global time-rescaling cannot be applied in the case of the stochastic block model due to the fact
that the force of infection is vector-valued rather than scalar-valued. Thus we develop new, fairly
general, tools using the idea of herd immunity to derive the LLN for the final size in the stochastic
block model.

Another method for deriving the trajectory of the epidemic curve is to analyze the forward and
backward branching processes of the epidemic. In Barbour and Reinert [2013], the authors study
the forward and backward branching processes in the case of graphs with bounded degree and apply
their results to determine the epidemic curves for G(n, p) and the Volz configuration model Volz
[2008]. Bhamidi et al. [2014] generalize the approach of Barbour and Reinert [2013] to the setting
of sparse random graphs with degrees having finite second moments under a slightly less general
epidemic setting. It is plausible that this approach could be generalized to the stochastic block
model using multi-type Crump-Mode-Jagers continuous time branching processes2 to prove a LLN
for the epidemic curve. However, to our knowledge this has not yet been done nor has it been used
even on a heuristic level to derive the correct differential equations describing the LLN, while these
fall out naturally from our approach.

There also exist several methods of analyzing the SIR trajectories using local graph approxima-
tions, provided the initially infected set of vertices is a constant proportion of all vertices chosen
uniformly at random. In Cocomello and Ramanan [2023], the authors study SIR and SEIR models
with (possibly) time-varying rates on locally tree-like graphs, and derive a law of large numbers
result. In Alimohammadi et al. [2023], the authors propose a local algorithm for approximation of
the epidemic trajectory and leverage local graph limit theory to show that the SIR evolution on a
sequence of graphs with a local limit converges to the same process in the graph limit. However,
in these approaches, it is not easy to connect the differential equation phase of the epidemic to
sub-linear initial conditions due to the fact that at the stopping time where a fixed fraction of the
vertices has been infected, the state of the epidemic is not that of an epidemic started at uniformly
chosen set of infected vertices.

By contrast, our work allows for general initial conditions of the epidemic (specifying the number
of active half-edges emanating from each vertex separately), and in particular can be used to
connect the initial phase starting from a sub-linear number of infected vertices to the phase where
the differential equation approximation can be used to prove a LLN. But of course, the results from
Cocomello and Ramanan [2023] and Alimohammadi et al. [2023], while not allowing to analyze
the case with o(n) initially infected vertices, are much more general as far as the underlying graph
model is concerned, and in fact do not even require an underlying stochastic graph model as long
as the sequence has a local limit.

2We thank Júlia Komjáthy for discussing this approach after one of us presented the current work at a conference
on random networks.
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3 Preliminaries

3.1 Poisson Stochastic Block Model Coupling

We will start with a simple lemma which will give us a coupling between the stochastic block
model and the Poisson stochastic block model. Using this coupling, our proof of Theorem 2.6 for a
graph drawn from PSBM(V , W ) will imply Theorem 2.6 for the standard stochastic block model
SBM(V , W ).

Lemma 3.1. Let K, W , k(·), and nk be as in Definition 2.1. Assume that n > maxk,ℓ Wk,ℓ, and
let W ′

k(u)k(v) = Wk(u)k(v)
1−Wk(u)k(v)/n , and consider a multi-graph G′ ∼ PSBM(V , W ′). If we condition on

G′ being simple, then the conditional distribution of G′ is given by SBM(V , W ). Furthermore, the
probability that G′ is simple is bounded away from 0, uniformly in n.

As a consequence, all statements holding with high probability for G′ ∼ PSBM(V , W ′) also hold
with high probability for G ∼ SBM(V , W ), reducing the proof of any convergence in probability
statements for G ∼ SBM(n, W ) to those for G′ ∼ PSBM(n, W ′). Thus a LLN for the (easier
to analyze) SIR epidemic on the Poisson stochastic block model will imply the same LLN on the
standard stochastic block model.

Proof. If G′ is a multi-graph with edge-multiplicities Auv, then the probability of drawing G′ from
PSBM(V , W ′) is equal to ∏

v≤u

pAuv

k(u)k(v)
Auv! e−pk(u)k(v) .

where pkk′ = n−1W ′
kk′ . As a consequence,

P(G′ simple) =
∏
u<v

(
e−pk(u)k(v) + e−pk(u)k(v)pk(u)k(v)

) ∏
u=v

e−pk(u)k(v) .

Furthermore, for any simple graph G = (V, E)

P(G′ = G | G′ simple) = P(G′ = G)
P(G′ simple) =

∏
uv∈E

pk(u)k(v)
1 + pk(u)k(v)

=
Wk(u)k(v)

n
,

showing that the conditional distribution of G′ is given by SBM(V , W ). To lower bound P(G′ simple)
we use that (1 + p)e−p ≥ e−p2/2, a bound which follows, e.g., from the fact that the derivative of
log(1 + p) − p + p2/2 is non-negative for all p ≥ 0. Setting p = maxk,k′ pkk′ , we therefore get

P(G′ simple) ≥ e−(n
2) p2

2 −np≥e− (np)2
4 −np

.

Since pn is uniformly bounded away from 0 as n → ∞, this completes the proof.

Remark 3.2. While the coupling of the full graph G ∼ SBM(V , W ) to G′ ∼ PSBM(V , W ′)
requires moving from W to the modified matrix W ′ and conditioning on G′ to be simple, it is not
hard to show that if we are only interested in a small neighborhood of a given set of vertices, we can
couple G ∼ SBM(V , W ) to G′ ∼ PSBM(V , W ) such that within the small neighborhood, G and G′

are identical with high probability, without having to condition G′ or moving from W to W ′ (see
Lemma 3.4 below, where we consider the set of vertices infected in the early stage of the infection).
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3.2 Coupling the SIR dynamic and the Poisson Stochastic Block Model

We study the SIR epidemic on a graph G drawn from the Poisson stochastic block model by
dynamically revealing the edges of G. This turns out to be much easier for the Poisson stochastic
block model than the original stochastic block model, due mainly to the independence inherent in
the Poisson degrees as expressed in Remark 2.4.

We keep track of the exploration procedure by dynamically updating what one might call a
decorated exploration forest on V , defined as a forest on V , augmented by a set of half-edges
attached to the leaves of the trees. Vertices will be marked infected or recovered, and we refer to
the number of half-edges attached to a leaf v as it’s active degree (denoted by dv(t)), and to the
half-edges as active half-edges.

The exploration process starts with a set of roots, consisting of the initially infected set of ver-
tices, V I(0), plus dv(0) ∼ Pois(Dk(v)) half-edges attached to each v ∈ V I(0), chosen independently
for all v. Given the exploration forest at some time t, for all active half-edges we independently
explore a half-edge at rate η and independent from that, i.i.d. for all infected vertices, move an
infected vertex to the recovered state at rate γ. When an active half-edge emanating from a vertex
u is explored, we remove it, choose a label ℓ according to pk(u)→ℓ, and then choose a vertex v
uniformly from all vertices with label k(v) = ℓ. If this vertex is susceptible, we infect it, add the
edge uv to the exploration tree, and add Pois(Dℓ) active half-edges to v. When a vertex v recovers,
we remove all its active half-edges, i.e., we set dv(t) to 0.

Lemma 3.3. The above defined exploration process and the SIR-process on a random multi-graph
G ∼ PSBM(V , W ) can be coupled in such a way that for all times t, the sets of susceptible, infected,
and recovered vertices are the same in both, with the forest traced out by the exploration process at
time t being equal to the infection forest at time t. Furthermore, an edge uv in the infection forest
(with uv oriented away from the roots) will appear in the exploration forest precisely at the time
t′ ≤ t when v was infected by u.

Proof. We start the proof with a cautionary remark: while the degree of any given vertex is given
by dv ∼ Pois(Dk(v)), it is not true that this holds independently for any set of vertices containing
more than one vertex, since the degrees of two vertices u and v share the randomness of Auv = Avu.

After this cautionary remark, we proceed with the actual proof. Consider a vertex u infected at
time t, and let V+ consist of all vertices not yet discovered at this point. We can then couple du(t)
to the Poisson random variables Auv = Avu defining the multi-graph G plus a second, independent
copy Ãuv as follows:

du(t) =
∑

v∈V+

Auv +
∑

v∈V \V+

Ãuv.

We will refer to the half-edges corresponding to the second sum as compromised, and the vertices
they point to as fake copies of the original vertex v. Furthermore, we will call a half-edge virulent at
time t if its endpoint has not yet been explored and the hidden endpoint of the edge corresponding to
it lies in S(t). Finally, after the initial infection of u, whenever one of the half-edges corresponding
to the first sum is explored, we will update the other half-edges pointing to the same end-point to
be compromised as well.

After this setup, the proof of the lemma is straightforward: by construction, virulent half-
edges will be not compromised, and for all vertices u, the total rate at which one of the Poisson
clocks of virulent half-edges emanating from u clicks is just the rate at which u infects susceptible
vertices. Finally, when a non-compromised half-edge is explored, its endpoint is a real, not fake
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vertex, showing that the distribution of discovered, newly infected vertices is correct as well. This
concludes the proof.

Lemma 3.4. Let Nn be a sequence such that Nn/n → 0 as n → ∞, and fix a set of initially suscep-
tible, infected, and recovered vertices. Then the SIR-process on the two graphs G ∼ SBM(V , W ) and
G′ ∼ PSBM(V , W ) can be coupled in such a way that with probability tending to 1 as n → ∞, the
sets of susceptible, infected, and recovered vertices are the same as long as |(V I(t)∪V R(t))\V R(0)| ≤
Nn.

Proof. On a high level, the lemma can be shown to hold by using the exploration process from the
proof of Lemma 3.3 for both models, and using that we are only exploring O(nNn) possible edges
to determine the course of the infection up to the time where |V I(t) ∪ V R(t) \ V R(0)| = Nn. The
fact that the total variation distance between a Bern(Wk(u)k(v)/n) and a Pois(Wk(u)k(v)/n) random
variable is O(1/n2) then implies the statement of the lemma.

Formally, we proceed as follows. Draw, independently for all oriented pairs (u, v) ∈ V × V , the
following random variables

1. a sample Muv ∼ Bern(Wk(u)k(v)/n)

2. a sample M ′
uv ∼ Pois(Wk(u)k(v)/n)

3. an infinite sequence of i.i.d. infection times T
(i)
uv ∼ Exp(η), i = 1, 2, . . . ,

with M ′
uv and Muv coupled in such a way that Muv = M ′

uv with probability 1 − O(1/n2), and T
(i)
uv

drawn independently of the coupled random variables M ′
uv and Muv. Finally, draw independent

samples of recovery times Tu ∼ Exp(γ) for the vertices in V .
We then use the following coupling of the two processes: starting from the set of initially infected

vertices, we attach two sets of (oriented) active edges to the vertices in V I(0): one red edge uv to
each of the vertices v ∈ V with Muv = 1 and M ′

uv orange edges between u and v for all vertices
v with M ′

uv > 0. We use the infection time T
(1)
uv on the red edges uv if Muv = 1, and the times

T
(1)
uv , . . . , T

(M ′
uv)

uv on the orange edges uv if M ′
uv ≥ 1. Using the random times Tu for recovery for

both processes, we see that the infections process on G and G′ is identical until the first time when
there exists a newly infected vertex u and a vertex v ∈ V such that Muv ̸= M ′

uv.
The rest is straightforward: order the vertices in V \ V I(0) according to their infection times

on G, and let Ai be the event that all edge choices up to the point where i got infected are such
that the number of red and orange edges for each explored pair uv is the same (including the edges
out of i). We then get that

P(Ai | Ai−1) =
∏
v∈V

P(Miv = M ′
iv) = (1 − O(1/n2))n = 1 − O(1/n)

with the initial probability of starting off with Muv = M ′
uv for all edges out of V I(0) being

P(A0) =
∏

u∈V I(0)

∏
v∈V

P(Muv = M ′
uv) = 1 − O(|V I(0)|/n).

Since |V I ∪ V R| is unaffected by recovery events, and grows by one precisely when a new vertex
gets infected, we see that

P(Ai) = 1 − O(Ñi/n)
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where Ñi = |V I(0)| + i is the size of |V I(t) ∪ V R(t) \ V R(0)| when i gets infected in G. This implies
the statement of the lemma.

When analyzing the SIR epidemic on a graph drawn from PSBM(V , W ), we will henceforward
work with the exploration process laid out at the beginning of this subsection, and will use

Xk(t) =
∑

v:k(v)=k

dv(t)

to denote the number of active half-edges attached to vertices of type k at time t. When proving
Theorem 2.6, we will actually prove a LLN jointly for Sk(t)/n, Ik(t)/n and Xk(t)/(Dkn), with
xk(t) being the limit of Xk(t)/(nDk). Note that conditioned on Ik(0), the initial number of active
half-edges Xk(0) is equal in distribution to Pois(DkIk(0)), so in particular, Xk(0)/(Dkn) has the
same expectation as Ik(0)/n, motivating the initial condition xk(0) = ik(0) in the theorem.

To motivate the differential equations Eq. (3), Eq. (4), and Eq. (5), we note that at any given
time

• at rate γXk, we lose one active edge contributing to Xk to recovery,

• at rate ηXk, we explore one of the active half-edges contributing to Xk.

When we explore an active half-edge contributing to Xk, Xk decreases by 1. To determine the
rate of increase of Xk, we note that when a half-edge labeled ℓ is explored, with probability pℓk =
Wℓknk/(nDℓ), we choose an endpoint with label k, and with probability Sk/nk, this endpoint then
hits a susceptible vertex, in which case Sk decreases by 1 and Xk increases by Pois(Dk). Therefore,
at an overall rate of η Sk

n

∑
ℓ Xℓ

Wℓk
Dℓ

we decrease Sk by 1 and increase Xk by Pois(Dk). Defining

ŝk(t) = Sk(t)
n

, x̂k(t) = Xk(t)
nDk

, and îk(t) = Ik(t)
n

,

we see that the expected rate of change for ŝk, x̂k and îk, conditioned on the current value of these
quantities, is equal to

−ηŝk(t)
∑

ℓ

x̂ℓ(t)Wℓk, −(η +γ)x̂k(t)+ηŝk(t)
∑

ℓ

x̂ℓ(t)Wℓk and −γîk(t)+ηŝk(t)
∑

ℓ

x̂ℓ(t)Wℓk,

respectively. Thus we expect that these quantities will obey a LLN given in terms of solutions to
the differential equations Eq. (3), Eq. (4), and Eq. (5).

4 Law of Large Numbers on Bounded Time Intervals
In this section, we prove Theorem 2.6. To this end, we first state and prove a version of the LLN that
allows for more general initial conditions than those implicit in Theorem 2.6. More specifically, we
generalize the setting discussed in the last section, with Xk(0) ∼ Pois(DkIk(0)) to a setting where
Xk(0) and Ik(0) can be specified separately. We will later use this more general theorem to discuss
an epidemic starting from a single infected vertex at time 0.
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4.1 Formal statement for arbitrary initial conditions

We will write the differential equations Eq. (3), Eq. (4) and Eq. (5) in the compact form dyt/dt =
b(yt), where yt ∈ R3K

+ is the vector (s1(t), . . . , sK(t), i1(t), . . . , iK(t), x1(t), . . . , xK(t)) and

bj(y) =


−ηyj∑K

k=1yk+2KWkj j = 1, . . . , K

−γyj + ηyj−K ∑K
k=1 yk+2KWk(j−K) j = K + 1, . . . , 2K

−(η + γ)yj + ηyj−2K∑K
k=1yk+2KWk(j−2K) j = 2K + 1, . . . , 3K.

(11)

We will consider solutions to these equations with initial conditions in the set

U0 =
{
y ∈ [0, ∞)3K :

K∑
k=1

(yk + yK+k) ≤ 1,
K∑

k=1
(yk + yk+2K) ≤ 2

}
,

which includes the initial conditions from Theorem 2.6, where we set xk(0) = ik(0) leaving just the
condition ∑K

k=1(yk + yK+k) ≤ 1.

Remark 4.1. Note that any solution of the differential equation dyt/dt = b(yt) will stay within
U0 if y0 ∈ U0 by the fact that (i) d(yk

t + yk+K
t )/dt ≤ 0 and d(yk

t + yk+2K
t )/dt ≤ 0 for all k ∈ [K],

and (ii) dyj
t /dt ≥ 0 if yj

t = 0. Using furthermore that the vector field b is Lipschitz in U0, we see
that for y0 ∈ U0, the differential equation dyt/dt = b(yt) has a unique solution yt ∈ U0 for all
t ∈ [0, ∞).

Our main theorem in this section gives a LLN for an arbitrary initial configuration of susceptible
vertices, infected vertices, and active half-edges. We will formulate it for a deterministic initial
configuration, and later use this theorem to discuss random initial conditions. We use ŷt to denote
the random vector

ŷt =
(

S1(t)
n

, . . . ,
SK(t)

n
,
I1(t)

n
, . . . ,

IK(t)
n

,
X1(t)
nD1

, . . . ,
XK(t)
nDK

)
.

Theorem 4.2 (Law of Large Numbers for Finite Time). Let L be the Lipschitz constant of the
vector field Eq. (11) on U =

{
y ∈ [0, ∞)3K : ∥y∥2 ≤ 4

}
, let t0 < ∞, and choose δ such that

0 < δ ≤ 1
3e−t0L. Choose y0 ∈ U0, and let yt be the unique solution of

dyt

dt
= b(yt)

with initial condition y0. Consider the coupling of the SIR epidemic on PSBM(V , W ) as defined
in Section 2, starting from an arbitrary initial configuration at time 0 obeying the conditions

max
v∈[n]

dv(0) ≤ log n and ∥y0 − ŷ0∥2 ≤ δ.

If mink Dk ≥ D0 > 0, then

P
(

sup
t∈[0,t0]

∥ŷt − yt∥2 > 3δet0L

)
≤ ζ

n

(
1 + t0(1 + log n)2

δ2

)
, (12)

where ζ is a constant depending on η, γ, ∥W∥∞ and D0.
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4.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is based on tools that are standard when proving laws of large numbers for
continuous time Markov processes: Doob’s L2-inequality and Gronwall’s lemma. We first introduce
some notation, consider the continuous-time Markov process defined via the exploration process
introduced in Section 3.2,

Y n(t) :=
(
(V S

k (t))k∈[K], (V I
k (t))k∈[K], (dA

v (t))v∈[n]
)

, (13)

with V S
k (t), V I

k (t), V R
k (t) as in 2.2, and dA

v (t) denoting the active degree of vertex v at time t. The
state space of {Y n(t) : t ≥ 0} is given by

E n :=
{(

(V S
k )k∈[K], (V I

k )k∈[K], (dA
v )v∈V

)
: ∀k, V S

k , V I
k ⊆ Vk and V S

k ∩ V I
k = ∅;

∀v ∈ V, dA
v ∈ N0 with dA

V = 0 if v /∈ ∪k∈[K]V
I

k

}
, (14)

where Vk := {v ∈ [n] : k(v) = k}. We denote the elements of E n by ξ, and use q(ξ, ξ′) to denote
that rate at which ξ transitions to ξ′. We consider the following projection onto the coordinates
for which we aim to establish the LLN,

y = (y1, . . . , y3K) : E n → R3K

ξ → 1
n

(
S1, . . . , SK , I1, . . . , IK ,

X1
D1

, . . . ,
XK

Dk

)
where here we overload the notation using Sk = |V S

k |, Ik = |V I
k | and Xk = ∑

v∈V I
k

dA
v . In order

to prove the LLN with the help of Doob’s L2-inequality, we need a bound on the variance of the
jumps,

α(ξ) =
∑
ξ′ ̸=ξ

|y(ξ′) − y(ξ)|2q(ξ, ξ′).

Lemma 4.3. Fix W , γ and η, and assume that mink Dk ≥ D0 for some D0 > 0. Then there exists
a constant ζ0 = ζ0(∥W∥∞, D0, γ, η) such that

α(ξ) ≤ ζ0
n

(
1 + max

v
dA

v

)2
for all ζ ∈ E n.

Proof. We write α(ξ) as a sum of three contributions,

α(ξ) = αR(ξ) + αA(ξ) + αI(ξ),

with the first term coming from transitions ξ → ξ′ corresponding to the recovery of a vertex, the
second comes from the exploration of an active half-edge which does not lead to the infection of a
new vertex, and the last one comes from infection events.

We start by analyzing the contribution to αR(ξ). Vertices recover at rate γ. Each time a vertex
recovers, the number of infected vertices decreases by 1 and the number of active infected edges
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decreases by the active degree of the recovered vertex. Thus the contribution due to recoveries can
be written as

αR(ξ) = γ
∑

k

∑
v∈V I

k

(
n−2 + (dA

v )2

n2D2
k

)
≤ γ

n

(
1 + D−2

0 max
v

(dA
v )2

)
.

Next we analyze transitions where a vertex gets explored, but no vertex gets infected, in which
case all that happens is that one of the active degrees decreases by 1. Since half-edges of type ℓ get
explored at rate ηXℓ and infect no vertex with probability

1 −
K∑

k=1

SkWkℓ

nDℓ
≤ 1,

we can bound

αA(ξ) ≤ η
K∑

ℓ=1
Xℓ

1
n2D2

ℓ

= η
K∑

ℓ=1

∑
v∈V I

ℓ

dA
v

1
n2D2

ℓ

≤ η

nD2
0

max
v

dA
v .

Finally, consider the transitions where a vertex of type ℓ infects a vertex of type k. In this case
the number of infected vertices in community k increases by 1, the number of susceptible vertices in
community k decreases by 1, and the number of free, infected, half-edges increases by Pois(Dk) − 1
if the explored half-edge was of the same type. If it was of a different type, ℓ then Xℓ decreases by
1 and Xk increases by Pois(Dk). Thus the contributions to α(ζ) from infections can be written as

αI =
K∑

k=1
αI,k.

where
αI,k = η

Sk

n

∑
ℓ

Xℓ
Wℓk

Dℓ

(
n−2 + n−2 + 1

n2D2
k

E[(Zk − δk,ℓ)2 + (1 − δk,ℓ)]
)

,

with Zk ∼ Pois(Dk). Thus

αI,k ≤ ηn−2 Sk

n

∑
ℓ

Xℓ
Wℓk

Dℓ

(
2 + 1

D2
k

E[Z2
k + 1]

)

= ηn−2 Sk

n

∑
ℓ

Xℓ
Wℓk

Dℓ

(
3 + D−1

k + D−2
k

)
≤ η

n

Sk

n
(3D−1

0 + D−2
0 + D−3

0 )∥W∥∞ max
v

dA
v

As a consequence,
αI ≤ η

n
(3D−1

0 + D−2
0 + D−3

0 )∥W∥∞ max
v

dA
v

Next we prove the following lemma, which follows immediately from the construction in Sec-
tion 3.
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Lemma 4.4. Consider the coupling of the SIR epidemic on PSBM(V , W ) as defined in Section 2.
Then the following statements hold with with probability at least 1 − 1

ne7∥W ∥∞.
i) For an infection starting with a single, infected vertex v with dv(0) ∼ Pois(Dk(v)),

sup
t≥0

max
v∈[n]

dv(t) ≤ log n.

ii) For an arbitrary initial configuration

sup
t≥0

max
v∈[n]

dv(t) ≤ max
{

max
v∈[n]

dv(0), log n

}
.

Proof. i) Let Zv, v ∈ V , be independent Pois(Dk(v)) random variables. Recall the construction
of the coupled process and note that dv(t) is decreasing in t, we see that maxv:k(v)=k dv(t) is
stochastically dominated by maxv∈[n] Zv. We know that

P(Zv ≥ log n) = P(e2Zv ≥ n2) ≤ 1
n2E[e2Zv ] = 1

n2 e(e2−1)Dk(v) ≤ 1
n2 e7∥W ∥∞ ,

where we used that Dk ≤ ∥W∥∞ for all k. The result follows by a union bound .
The proof of (ii) is a straightforward generalization of the proof of (i).

Proof of Theorem 4.2. Given our preparations, this proof follows immediately from Theorem 4.1 in
Darling and Norris [2008], which in turn is based on Gronwall’s inequality and Doob’s L2 inequality.
Recall the definition of U from Theorem 4.2,

U =
{
y ∈ [0, ∞)3K : ∥y∥2 ≤ 4

}
,

and set ε = 3δet0L. Note that U is a superset of U0 since y ∈ U0 implies that ∥y∥1 ≤ 3 and
∥y∥2 ≤ ∥y∥1. Furthermore, we have that

for all t ∈ [0, ∞) and all ξ ∈ E n, ∥y(ξ) − yt∥2 ≤ ε implies that y(ξ) ∈ U. (15)

To see this, note that y0 ∈ U0 implies that yt ∈ U0, which in turn implies that ∥yt∥2 ≤ ∥yt∥1 ≤ 3.
The claim then follows from the triangle inequality and the fact that ε ≤ 1 by our assumption that
δ ≤ 1

3e−t0L. This puts us in the setting of Darling and Norris [2008], Section 4.
Theorem 4.1 of Darling and Norris [2008] then states that for all A ∈ R+

P
(

sup
t≤t0

∥ŷt − yt∥2 > ε

)
≤ 4At0

δ2 + P
(∫ T ∧t0

0
α(Y n(t)) dt > At0

)
, (16)

where T := inf{t ≥ 0 : ŷt ̸∈ U}. Set

A = ζ0
n

(1 + log n)2,

where ζ0 is the constant from Lemma 4.3. Combining the fact that dv(0) ≤ log n by the assumption
of the theorem with the first statement of Lemma 4.4 (ii) and Lemma 4.3, we then have that

P
(∫ T ∧t0

0
α(Y n(t)) dt > At0

)
≤ P

(
sup

t∈[0,t0]
max
v∈[n]

dv(t) ≥ log n

)
≤ 1

n
e7∥W ∥∞ (17)

This completes the proof.
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Remark 4.5. Theorem 4.1 of Darling and Norris [2008] covers the more general situation where
the drift vector of the continuous time Markov-chain is only approximately equal to b(ŷt). To state
this generalization, we assign a drift vector β(ξ) to each ξ ∈ E n via

β(ξ) =
∑
ξ′ ̸=ξ

(y(ξ′) − y(ξ))q(ξ, ξ′).

In the setting of Theorem 4.2, we had β(Y n(t)) = b(ŷt) for all times t. If this is violated, Theorem
4.1 of Darling and Norris [2008] gives an additional error term of

P
(∫ T ∧t0

0
∥b(ŷt) − β(Y n(t))∥2dt > δ

)
(18)

on the right hand side of Eq. (16). We will need this generalization in the proof of Theorem 2.6.

4.3 Proof of Theorem 2.6

Recall that Theorem 4.2 required that ∥ŷ0 − y0∥ ≤ δ, while Theorem 2.6 allows for arbitrary initial
conditions as long as they obey Assumption 2.5. To prove Theorem 2.6, we therefore need to bound
the probability

P (||ŷ0 − y0||2 > δ) ,

where y0 is the initial conditions as defined in the statement of Theorem 2.6. Using the fact that
x(0) = i(0), we have

∥ŷ0 − y0∥2 ≤ ∥ŝ0 − s0∥2 +
∥∥∥î0 − i0

∥∥∥
2

+ ∥x̂0 − i0∥2

≤ ∥ŝ0 − s0∥2 + 2
∥∥∥î0 − i0

∥∥∥
2

+
∥∥∥x̂0 − î0

∥∥∥
2

.

By Assumption 2.5, the first two terms go to 0 in probability, furthermore E[x̂0] = E[̂i0], thus by
standard concentration bounds, the last term therefore also goes to 0 in probability. Showing that
for any δ > 0,

P (∥ŷ0 − y0∥2 > δ) → 0 as n → ∞. (19)

Next, as in the proof of Lemma 4.4,

P
(

max
v∈[n]

dv(0) > log n

)
≤ 1

n
e7∥W ∥∞ ,

which goes to 0 as n → ∞ as well. Finally, by Assumption 2.5 i) it follows that nk/n is bounded
away from 0 uniformly in n. Combining that fact with the assumption that ∑ℓ Wkℓ > 0 for
all k ∈ [K], we know that mink Dk ≥ D0 for some constant D0 > 0 that does not depend on n.
Therefore, under the conditions of Theorem 2.6, those of Theorem 4.2 hold with probability tending
to 1 as n → ∞, reducing Theorem 2.6 to Theorem 4.2 when G ∼ PSBM(V , W ).

To finish the proof of Theorem 2.6 when G ∼ SBM(V , W ), we use Lemma 3.1, which states that
there exists a W ′ such that the distribution of G′ ∼ PSBM(V , W ′) conditioned on being simple is
that of G, and then apply Theorem 4.2 to SIR epidemics on G′. More precisely, we will use the

19



extension described in Remark 4.5 to take into account that the drift vector β(ξ) of the continuous
time Markov chain for the coupled SIR dynamics on G′ is given in terms of W ′,

β(ξ) =

(−η
Sk

n

∑
ℓ

Xℓ

n

W ′
ℓk

Dℓ

)
k∈[K]

,

(
−γ

Ik

n
+ η

Sk

n

∑
ℓ

Xℓ

n

W ′
ℓk

Dℓ

)
k∈[K]

,

(
−(η + γ) Xk

nDk
+ η

Sk

n

∑
ℓ

Xℓ

n

W ′
ℓk

Dℓ

)
k∈[K]

 ,

(20)
while we want to establish the law of large numbers for the differential equations given in terms of
the vector field Eq. (11) defined in terms of W .

We need an upper bound on the term in Eq. (18). Recall that W ′
ℓk = Wℓk/(1 − Wℓk/n), and

assume that n ≥ 2∥W∥∞. For any ξ ∈ E n we have

∥b(ŷ(ξ)) − β(ξ)∥2 ≤ ∥b(ŷ(ξ)) − β(ξ)∥1 ≤
∑

k∈[K]
3
∥∥∥∥∥ηŝk

∑
ℓ

x̂ℓ

(
W ′

ℓk − Wℓk

)∥∥∥∥∥
1

≤ ζ

n

∥∥∥∥∥∑
ℓ

x̂ℓ

∥∥∥∥∥
1

for some constant ζ depending on ∥W∥∞ and η. For n sufficiently large, we therefore have that

P
(∫ T ∧t0

0
∥b(ŷt) − β(Y n(t))∥2 dt > δ

)
≤ P

(∫ T ∧t0

0

ζ

n
∥x̂(t)∥1 dt > δ

)

= P
(

ζt0
n

∥x̂(t)∥1 > δ

)
≤ P

(
D−1

0 sup
t≥0

max
v∈[n]

dv(t) >
δn

ζt0

)
≤ n−1e7∥W ′∥∞ ≤ n−1e14∥W ∥∞

where the second to last inequality follows from a proof analogous to that of Lemma 4.4. This
proves the desired law or large numbers for the epidemic on G′ ∼ PSBM(V , W ′). Conditioning
on G′ being simple, the statement of Theorem 2.6 for G ∼ SBM(V , W ) follows with the help of
Lemma 3.1.

5 Law of Large Numbers for the Final Size
In this section, we will prove Theorem 2.8, which gives a law of large numbers for the final state of
the SIR epidemic on the stochastic block model.

5.1 Solution to Differential Equations

We start by establishing a few elementary facts about the solutions of the differential equations.
Throughout this section, b(·) will be the vector field defined in Eq. (11).

Lemma 5.1. For all finite t, the solution yt to the differential equation dyt/dt = b(yt) is continuous
in the initial conditions y0 ∈ U0.

Proof. The proof is standard and follows immediately from Gronwall’s inequality and the fact that
b(·) is Lipschitz continuous.

Lemma 5.2. Let yt = (s1(t), . . . , sK(t), i1(t), . . . , iK(t), x1(t), . . . , xK(t)) be the solution to the
differential equation dyt/dt = b(yt) with initial condition y0 ∈ U0. Then

(a) As t ↑ ∞, sk(t) ↓ sk(∞) ≥ 0.
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(b) limt→∞ xk(t) = 0

(c) limt→∞ ik(t) = 0

(d) sk(∞) > 0 if and only if sk(0) > 0

(e) Assume that W is irreducible, sk(0) > 0 for all k, and that x(0) ̸= 0. Then

xk(t) > 0, ik(t) > 0 and dsk(t)
dt

< 0

for all 0 < t < ∞ and all k ∈ [K].

Proof. The proof follows from a straightforward analysis of the differential equations Eq. (3),
Eq. (4), and Eq. (5) and is given in Appendix B.

Lemma 5.3. For all initial conditions y0 ∈ U0, the limit s(∞) = limt→∞ s(t) obeys the implicit
equation

sk(∞) = sk(0) exp
{

− η

η + γ

∑
ℓ

Wℓk

(
sℓ(0) − sℓ(∞) + xℓ(0)

)}
. (21)

Proof. Defining χℓ(t) =
∫ t

0 xℓ(τ)dτ , we can integrate Eq. (3) to express sk(∞) as

sk(∞) = sk(0) exp
{

−η
∑

ℓ

χℓ(∞)Wℓk

}
. (22)

Next we express the term (η + γ)xk(t) in Eq. (4) as (η + γ)dχk(t)
dt and then use Eq. (3) and Eq. (4)

to conclude that the derivative of sk(t) + xk(t) + (η + γ)χk(t) is 0, showing in particular that
sk(∞) + (η + γ)χk(∞) = sk(0) + xk(0). Inserted into the above expression for sk(∞) this proves
the statement of the lemma.

Remark 5.4. Assume that sk(0) > 0 for all k, and set qk = sk(∞)/sk(0). We can then rewrite
the implicit equation Eq. (21) as an implicit equation for qk,

qk = e−ak exp
(

−
∑

ℓ

Cℓk (1 − qℓ)
)

= e−akGk(q) (23)

where ak = η
η+γ

∑
ℓ Wℓkxℓ, C = η

η+γ Wdiag(s(0)), and Gk(q) is the generating function for the
off-spring distribution of a Poisson multi-type branching process with mean matrix C starting from
a root of type k. As we will see in the next section, for x(0) > 0, the implicit equation Eq. (23)
has a unique solution which is the survival probability of a certain “backward” branching process
expressing the probability that a random vertex of type k gets infected in the course of the infection.

5.2 Backward Branching Process

In the previous section we derived the implicit equation Eq. (23) by considering the infinite time
limit of the solutions to the differential equations Eq. (3), Eq. (4), and Eq. (5). As we will see, they
can also be understood as an implicit equation for the survival probability of a certain branching
process. To motivate the definition of this branching process, we note that in order for an initially
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susceptible vertex to be eventually infected, it either has to be infected directly by a vertex infected
at time 0, or it has to be infected via a chain of infections going through initially susceptible vertices.

Consider an active edge contribution to Xℓ(0). The probability that it directly infects a random
vertex v of label k is η

η+γ
Wℓk
nDℓ

. Treating these infection events as approximately independent, we
see that the probability that v is not directly infected is approximately equal to

∏
ℓ

(
1 − η

η + γ

Wℓk

nDℓ

)Xℓ

≈ exp
(

− η

η + γ

∑
ℓ

Wℓkxℓ

)
= e−ak .

On the other hand, if a vertex w that is connected to v via an edge gets infected at some point
during the course of the SIR epidemic, its probability to transmit the infection to v is equal to

η
η+γ . Since v has Pois(Wkℓŝℓ(0)) ≈ Pois(Wℓksℓ(0)) many neighbors of of label ℓ, who themselves
can again be either directly of indirectly infected, we are lead to consider the following “backward”
branching process.

Starting from a susceptible vertex v of label k, we directly infect it with probability 1 − e−ak

(represented by a child of type K + 1 in the backward branching process), while with probability
e−ak we give it Pois

(
η

η+γ Wℓksℓ(0)
)

children of color ℓ which could transmit an infection to v. In
later generations, we proceed iteratively with the same offspring distribution for parents of type
k ∈ [K], while parents which are infected stay infected (formally, with probability 1, each parent of
type K + 1 has exactly one child of type K + 1). As argued above, the survival probability of the
backward branching process starting from a root of type k should then be asymptotically equal to
the probability that a randomly chosen vertex from the vertices with label k that are susceptible
at time 0 gets infected at some time during the epidemic.

While we don’t derive this directly, we will prove it indirectly by showing that for ∑ℓ aℓ > 0 the
implicit equation Eq. (23) has a unique solution, and that this solution is the survival probability
of the backward branching process starting from a root of type k, see Appendix A for details.

5.3 Reff and herd immunity

To motivate the next definition and lemma, we note that the differential equation Eq. (4) can be
written in the form

dx(t)
dt

= (η + γ)x(t)(C(t) − 1), (24)

where x(t) = (x1(t), . . . , xK(t)), 1 is the K × K identity matrix and C(t) is the matrix

C(t) = η

η + γ
Wdiag(s(t)).

Using λmax(C(t)) to denote the largest eigenvalue of the matrix C(t), we define

Reff(t) := λmax(C(t)). (25)

Lemma 5.5. Reff(t) is a continuous, non-increasing function of t. If we assume that W is irre-
ducible, sk(0) > 0 for all k, and x(0) ̸= 0, then Reff(t) is strictly monotone and Reff(t) < 1 for all
large enough t.

Proof. We start by proving monotonicity and continuity. Let ∥·∥F be the frobenius norm. By
Gelfand’s formula for the spectral radius, Reff(t) = limm→∞ ∥Cm(t)∥1/m

F . Since sk(t) is weakly
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monotone decreasing in t for all k, it follows that (C(t))ℓk is weakly monotone as well. Furthermore,
the elements of C(t) are non-negative for all t so ∥Cm(t)∥F is weakly monotone, implying the desired
weak monotonicity of Reff(t). To establish continuity, we use continuity of eigenvalues as a function
of the matrix entries, Bhatia et al. [1990], combined with the continuity of sk(·).

To prove strict monotonicity, we note that the eigenvalues of C(t) are equal to those of the
symmetric matrix C ′(t) with entries (C ′(t))kℓ = η

η+γ

√
sk(t)Wkℓ

√
sℓ(t), giving the alternative rep-

resentation
Reff(t) = max

v
vT C ′(t)v

where the maximum goes over all normalized vectors v, which by Perron-Frobenius can be chosen
to have all positive entries. Since sk(t) is strictly monotone by Lemma 5.2 (e), the entries of C ′(t)
are strictly monotone, which implies that Reff(t) is strictly monotone.

Finally, assume towards contradiction that Reff(t) ≥ 1 for all t. By continuity, the same holds
for the largest eigenvalue of C(∞) , Reff(∞). Let v be the eigenvector of C(∞) corresponding to
the eigenvalue Reff(∞) ≥ 1. Again by Perron-Frobenius, we may assume that v has all positive
entries. Since the entries of C(t) are monotone decreasing in t, we have that C(t)v ≥ C(∞)v ≥ v

component-wise. Inserted into Eq. (4), this implies dx(t)
dt · v ≥ 0 for all 0 ≤ t < ∞ which is a

contradiction, as x(0) ·v > 0 by the assumption that x(0) ̸= 0 and x(t) ·v → 0 by Lemma 5.2.

Remark 5.6. It is not hard to see that in the differential equation representation for the epidemic,
Reff(t) = 1 is the herd immunity threshold of the epidemic. Indeed, if Reff(t0) < 1 and v is the
corresponding right eigenvector with all positive entries, then

dx(t)
dt

· v ≤ (η + γ)(Reff(t0) − 1)x(t) · v for all t ≥ t0

showing that x(t) · v and hence ∥x(t)∥1 is decaying exponentially in t − t0 for any initial condition
x(t0). As a consequence, a small infection at time t0 will only have small overall impact on the
final size of the infection. By contrast, if Reff(t0) > 1, then x(t) ·v will grow exponentially in t − t0
until Reff(t) = 1. Thus no matter how small x(t0) is, the infection will always have a sizable effect
on the final size, since the infection won’t start to recede before it has infected enough susceptible
vertices to drive Reff(t) below one.

In our subsequent proofs, it will be useful to have a version of Lemma 5.5 which gives a lower
bound on Reff that holds uniformly over a suitable set of initial conditions.

Lemma 5.7. Consider an arbitrary compact set C of the intitial conditions such that for all initial
conditions in C , x(0) ̸= 0 and sk(0) > 0 for all k, and assume that W is irreducible. Then there
exists δ > 0 and t0 < ∞ such that Reff(t0) < 1 − δ for all initial conditions in C .

Proof. Consider any starting conditions (s̃(0), x̃(0)) ∈ C . By Lemma 5.5, we can choose t̃0 < ∞
and δ̃ > 0 such that Reff(t̃0) < 1 − 2δ̃. By Lemma 5.1 and the fact that eigenvalues are continuous
in the elements of the matrix C(t̃), there exists an open ball Br̃ around (s̃(0), x̃(0)) such that
Reff(t̃0) < 1 − δ̃ for all initial conditions in Br̃ ∩ C . This uncountable collection of balls Br̃ indexed
by starting conditions in C gives an open cover of the set C with the property that (i) each starting
condition (s(0),x(0)) ∈ C is in some ball Br̃ and (ii) for any starting condition in Br̃ we have that
Reff(t̃0) < 1 − ε̃ for some t̃0 < ∞ and δ̃ > 0. Since C is compact, this open cover has a finite
subcover, giving the desired result.
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We will also use a similar lemma for the difference between y(t) and its asymptotic value y(∞).

Lemma 5.8. Let W be irreducible and let C be as in Lemma 5.7. Then there exists δ1 > 0 such
that mink sk(∞) ≥ δ1 for all initial conditions in C . In addition, for all ε > 0 there exists t1 < ∞
such that for all initial conditions in C ,

∥yt − y∞∥2 ≤ ε for all t ≥ t1.

Proof. Let t0 and δ be as in Lemma 5.7, and let C ′(t) be the symmetric matrix defined in the proof
of Lemma 5.5. For t ≥ t0, we then have

x(t) ≤ x(t0)e(η+γ)(C(t0)−1)(t−t0) = x(t0)A−1e(η+γ)(C′(t0)−1)(t−t0)A

where A is the diagonal matrix with entries
√

sk(t0). Since 1 ≥ sk(t0) > 0 for all initial conditions
in C , continuity and compactness imply the existence of some δ′ > 0 such that 1 ≥ sk(t0) ≥ δ′ for
all initial conditions in C . Combined with the fact that yt0 ∈ U0 implies ∥x(t0)∥2 ≤ ∥x(t0)∥1 ≤ 2,
we conclude that for all t ≥ t0,

∥x(t)∥2 ≤ 2
δ′ ∥e(η+γ)(C′(t0)−1)(t−t0)∥2→2 = 2

δ′ e
(η+γ)(Reff(t0)−1)(t−t0) ≤ 2

δ′ e
−(η+γ)δ(t−t0), (26)

where ∥ · ∥2→2 is the operator norm from ℓ2 to ℓ2.
Observe that by the above bound,

∫∞
t0

∥x(t)∥2 dt ≤ 2
(η+γ)δδ′ , which, by Eq. (21) and the lower

bound on sk(t0) shown earlier, in turn implies that sk(∞) is bounded away from zero uniformly for
all initial conditions in C . Furthermore, again by Eq. (21) and the fact that 1 − e−x ≤ x, we have
that for all t ≥ t0

∥s(t) − s(∞)∥2 ≤ η∥W∥∞

∫ ∞

t
∥x(t)∥2 dt ≤ 2η∥W∥∞

(η + γ)δδ′ e
−(η+γ)δ(t−t0). (27)

To complete the proof, we choose t̃1 such that the right hand sides of Eq. (26) and Eq. (27) are
smaller than ε/4 for all t ≥ t̃1 and then use the fact that i(t) → 0 for all initial conditions in C
and another continuity & compactness argument to conclude that there exists a finite time t1 ≥ t̃1
such that ∥i(t1)∥2 ≤ ε/4 for all initial conditions in C . Combined with the fact that ik(t) + sk(t)
is increasing in t, we infer that for t ≥ t1 we have

∥i(t)∥2 ≤ ∥i(t1)∥2 + ∥s(t1) − s(t)∥2 ≤ ε

4 + ∥s(t1) − s(∞)∥2 ≤ ε

2
to complete the proof.

Next we introduce the analog of Reff for the actual SIR-infection on the Poisson stochastic block
model. In particular, given the state of the infection at time t with Sk(t) susceptible vertices with
label k, we define

Ĉ(t) = η

η + γ
Wdiag(ŝ(t)) where ŝ(t) = 1

n
S(t), (28)

and set
R̂eff(t) := λmax(Ĉ(t)). (29)

The threshold R̂eff(t) = 1 can then be seen as the threshold for herd immunity for the (stochastic)
SIR epidemic on the Poisson stochastic block model.
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The following lemma shows that after passing this herd immunity threshold, a small initial
outbreak (with a only a few active edges) will leave most of the vertices which are still susceptible
untouched, while also not increasing the number of active half edges by more than a constant factor.
It is a major ingredient in our proof of Theorem 2.8.

Lemma 5.9. Consider an SIR-epidemic on PSBM(V , W ) and assume that at time t0 there are
Xk(t0) active edges and Sk(t0) susceptible vertices of label k. If R̂eff(t0) < 1, then

E[∥ŝ(t0) − ŝ(∞)∥2 | F (t0)] ≤ 1
mink

√
ŝk(t0)

R̂eff(t0)
1 − R̂eff(t0)

∥x̂(t0)∥2

and
E
[

sup
t≥t0

∥x̂(t)∥2

∣∣∣∣F (t0)
]

≤ 1
mink

√
ŝk(t0)

1
1 − R̂eff(t0)

∥x̂(t0)∥2,

where the expectation is conditioned on the state of the epidemic at time t0.

Proof. Recall the coupling of the epidemic and the Poisson stochastic block model from Section 3.2.
We will want to estimate the contribution from each active half-edge at time t0 to the the difference
Sk(t0) − Sk(∞), which is nothing but the total number of newly infected vertices emanating from
this half-edge after time t0. Assume that the half-edge in question has label ℓ. With probability

η
η+γ the infection clock on this half-edge will click at some time t before the recovery clock, at which
point it will infect a vertex of label ℓ′ with probability Wℓℓ′

nDℓ
Sℓ′(t), for an overall probability of

η

η + γ

Wℓℓ′

nDℓ
Sℓ′(t) ≤ 1

Dℓ
Ĉℓℓ′(t0)

of infecting a vertex of label ℓ′. Each of these will give Pois(D′
ℓ) new active half-edges of label

ℓ′, who in turn will each lead to a number of new infected vertices of label ℓ′′ with probability at
most 1

D′
ℓ
Ĉℓ′ℓ′′(t0). Thus the expected number of infected vertices emanating from one of these is

bounded by Dℓ′ 1
D′

ℓ
Ĉℓ′ℓ′′(t0) = Ĉℓ′ℓ′′(t0). Continuing by induction, we see that in expectation, the

total number of infected vertices of label k in generation m, m = 1, . . . is bounded above by

∑
ℓ

Xℓ(t0)
Dℓ

(Ĉ(t0)m)ℓk.

Summing up the contributions from all generations and observing that the total change in Sk from
time t0 to the point where the infection dies out is just the total number of newly infected vertices
after time t0, we see that in expectation we have the bound

E[ŝk(t0) − ŝk(∞) | F (t0)] ≤
∞∑

m=1
(x̂(t0)Ĉ(t0)m)k =

(
x̂(t0) Ĉ

1 − Ĉ

)
k

Next we write Ĉ as Ĉ = Q̂−1M̂Q̂ where Q̂ is the diagonal matrix with entries Q̂kk =
√

ŝk(t0) and
M̂ = η

η+γ Q̂WQ̂ to write Ĉ

1−Ĉ
as Q̂−1 M̂

1−M̂
Q̂. This gives the bound
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E[∥ŝ(t0) − ŝ(∞)∥2 | F (t0)] ≤ E[∥ŝ(t0) − ŝ(∞)∥1 | F (t0)]

≤
∑

k

(
x̂(t0) Ĉ

1 − Ĉ

)
k

=
∑

k

(
x̂(t0)Q̂−1 M̂

1 − M̂
Q̂

)
k

≤ ∥Q̂−1∥∞x̂(t0) M̂

1 − M̂
vM

where vM is the column vector with entries Mk. Using the fact that M̂ is symmetric with the same
eigenvalues as Ĉ(t0), we bound the operator norm of M̂

1−M̂
by R̂eff(t0)

1−R̂eff(t0)
to conclude that

E[∥ŝ(t0) − ŝ(∞) | F (t0)∥2 ≤ ∥Q̂−1∥∞∥x̂(t0)∥2
R̂eff(t0)

1 − R̂eff(t0)
∥vM ∥2.

Bounding ∥vM ∥2
2 = ∑

k ŝk(t0) ≤ 1 and observing that ∥Q̂−1∥∞ = 1
mink

√
ŝk(t0)

this completes the
proof of the first inequality.

To prove the second inequality, we note Xk(t) can be upper bounded by Xk(t0) plus the total
number of active half-edges created after time t0. Proceed as in the proof of the bound on Ŝ(∞),
and denoting the number of new active half-edges of label k generated in generation m by Zm,k,
we get

E[Zm,k | (Zm−1,ℓ)ℓ∈[K]] ≤ Dk

∑
ℓ

η

η + γ
Zm−1,ℓ

Wℓk

nDℓ
Sk(t0) = Dk

∑
ℓ

Zm−1,ℓ

Dℓ
Ĉℓk,

which by induction implies that

E
[

Zk,m

nDk

∣∣∣∣ F (t0)
]

≤
∑

ℓ

Xℓ(t0)
nDℓ

(Ĉm)ℓk =
∑

ℓ

x̂ℓ(t0)(Ĉm)ℓk.

As a consequence,

E
[

sup
t≥t0

x̂k(t)
∣∣∣∣ F (t0)

]
≤
∑
m≥0

∑
ℓ

x̂ℓ(t0)(Ĉm)ℓk =
(
x̂(t0) 1

1 − Ĉ

)
k

Continuing as in the proof of the first bound, this implies the second bound of the lemma.

Remark 5.10. Note that Lemma 5.9 implies a similar statement for Ik(t). This follows immedi-
ately from the fact that both Sk(t) and Sk(t) + Ik(t) are non-increasing in t. As a consequence, we
get that for all t ≥ t0

Ik(t) ≤ Ik(t0) + Sk(t0) − Sk(t) ≤ Ik(t0) + Sk(t0) − Sk(∞),

which together with the statements of Lemma 5.9 implies that past the herd immunity threshold, a
small initial outbreak (with a small number of initially active edges and infected vertices) will stay
small for all t ≥ t0.
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5.4 Final Size of the Epidemic

In this section we prove Theorem 2.8, which in particular implies a law of large numbers for the
final size of the infection. As in Section 4.1, we generalize the setting of Theorem 2.8, (with initial
conditions which imply that Xk(0) ∼ Pois(DkIk(0))) to a setting where Xk(0) and Ik(0) can be
specified separately, again using x̂(t) to denote the state of the epidemic of the SIR model coupled
to G ∼ PSBM(V , W ) as defined in Section 3.2. Theorem 2.8 will follow in the same way as Theorem
2.6 followed from Theorem 4.2.

Note that in contrast to Theorem 4.2, where all constants were independent of the initial
conditions, the bounds in the next theorem are only uniform over the initial conditions in a compact
subset C ⊂ U0 obeying the condition

y(0) ∈ C ⇒ x(0) ̸= 0 and sk(0) > 0 for all k ∈ [K]. (30)

Theorem 5.11. Assume that W is irreducible and maxk Dk ≥ D0 for some D0 > 0. Let C ⊂ U0
be a compact set obeying the conditions in Eq. (30), and let ε > 0. Then there exists constants
δ > 0 and n0 < ∞ such that if yt is the solution of the differential equation dyt/dt = b(yt) with
initial conditions y0 ∈ C , then

P
(

sup
t≥0

∥ŷt − yt∥2 ≤ ε

)
≥ 1 − ε (31)

provided n ≥ n0 and the initial configuration at time 0 obeys the bound

max
v∈[n]

dv(0) ≤ log n and ∥y0 − ŷ0∥2 ≤ δ. (32)

Proof. The proof follows immediately from Theorem 4.2, the fact that yt → y∞ as t → ∞, and the
fact that for t large enough, the infection has passed the herd immunity threshold and thus dies
out quickly, implying that ŷt − ŷ∞ is small when t is large. Lemmas 5.7, 5.8, 5.9 and Remark 5.10
provide the needed quantitative estimates.

Concretely, we first use Theorem 4.2 to see that for all t0 < ∞, we can choose n0 < ∞ and
δ > 0 such that if n ≥ n0, y0 ∈ U0 and the conditions in Eq. (32) hold, then

P
(

sup
0≤t≤t0

∥ŷt − yt∥2 ≤ ε

)
≥ 1 − ε/4.

To prove Theorem 5.11, it is therefore enough to to show that

P
(

sup
t≥t0

∥ŷt − yt∥2 ≤ ε

)
≥ 1 − 3ε/4, (33)

uniformly for all y0 ∈ C . To this end, we use the triangle inequality to conclude that for t ≥ t0

∥yt − ŷt∥2 ≤ ∥yt − yt0∥2 + ∥yt0 − ŷt0∥2 + ∥ŷt0 − ŷt∥2, (34)

and then use the fact that yt converges as t → ∞ to bound the first term, Theorem 4.2 to bound
the second, and Lemma 5.9 and Remark 5.10 to bound the last.

The details are tedious but straightforward. First, by Lemma 5.7, there exists δ0 and t1 < ∞
such that for all initial conditions in C , Reff(t1) < 1 − δ0. By Lemma 5.8, there exists δ1 > 0 such
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that mink sk(∞) ≥ δ1, and we can choose t0 ≥ t1 large enough such that for any starting condition
in C ,

∥x(t0)∥2 ≤ ε2

64
1 − Reff(t1)
1 + Reff(t1)min

k

√
sk(t0), ∥i(t0)∥2 ≤ ε

8 and ∥y∞ − yt∥2 ≤ ε

8 for all t ≥ t0.

In particular, ∥y∞ − yt∥2 ≤ ε/8 for all t ≥ t0 implies that

∥yt − yt0∥2 ≤ ∥yt − y∞∥2 + ∥yt0 − y∞∥2 ≤ ε

4 for all t ≥ t0,

giving a uniform bound on the first term in Eq. (34).
Next we prove an upper bound on the right hand side of the bounds in Lemma 5.9. To this end,

we use Theorem 4.2 to conclude that given any ε′ > 0 we can choose n0 large enough and δ small
enough, such that for all n ≥ n0 and under the condition Eq. (32), we have that with probability
at least 1 − ε/4

∥ŝ(t0) − s(t0)∥2 ≤ ε′δ1 and ∥x̂(t0)∥2 ≤ ∥x(t0)∥2 + ε′.

The first bound implies that ŝk(t0) ≤ (1 + ε′)sk(t0) for all k, showing that Ĉ(t0) ≤ (1 + ε′)C(t0)
and thus R̂eff(t0) ≤ (1 + ε′)Reff(t0) ≤ (1 + ε′)Reff(t1), in addition to the lower bound ŝk(t0) ≥
(1 − ε′)sk(t0). By choosing ε′ sufficiently small, we therefore have that with probability at least
1 − ε/4

1
mink

√
ŝk(t0)

1 + R̂eff(t0)
1 − R̂eff(t0)

∥x̂(t0)∥2 ≤ 3
2

1
mink

√
sk(t0)

1 + Reff(t1)
1 − Reff(t1)∥x̂(t0)∥2

≤ 3
2

1
mink

√
sk(t0)

1 + Reff(t1)
1 − Reff(t1)∥x(t0)∥2 + 3

2
1√
δ1

2 + δ0
δ0

ε′ ≤ 3
2

ε2

64 + 1
2

ε2

64 = ε2

32 .

Combined with Lemma 5.9, this implies that with probability at least 1 − ε/4.

E
[(

∥ŝ(t0) − ŝ(∞)∥2 + sup
t≥t0

∥x̂(t)∥2
)∣∣∣F (t0)

]
≤ ε2

32 . (35)

Applying Markov’s inequality to the conditional expectation, and then using that the above bound
holds with probability at least 1 − ε/4, we see that with probability at least 1 − ε/2,

∥ŝ(t0) − ŝ(∞)∥2 + sup
t≥t0

∥x̂(t)∥2 ≤ ε

8 .

Combined with the fact that ∥ŝ(t0) − ŝ(t)∥2 is monotone in t and the bound from Remark 5.10, we
get that with probability at least 1 − ε/2,

∥ŷt0 − ŷt∥2 ≤ ∥ŝ(t0) − ŝ(t)∥2 + ∥x̂(t0)∥2 + ∥x̂(t)∥2 + ∥î(t0)∥2 + ∥î(t)∥2

≤ 2∥ŝ(t0) − ŝ(∞)∥2 + ∥x̂(t0)∥2 + ∥x̂(t)∥2 + 2∥î(t0)∥2

≤ ε

4 + 2∥i(t0)∥2 + 2∥î(t0) − i(t0)∥2 ≤ ε

2 + 2∥î(t0) − i(t0)∥2.

Inserting into Eq. (34) and using that ∥yt −yt0∥2 ≤ ε
4 for all t ≥ t0, this gives that with probability

at least 1 − ε/2
sup
t≥t0

∥yt − ŷt∥2 ≤ 3ε

4 + ∥yt0 − ŷt0∥2 + 2∥î(t0) − i(t0)∥2

Using Theorem 4.2 a second time (and adjusting n0 and δ if needed), the remaining terms on the
right can be made smaller than ε/4 with probability at least 1 − ε/4, completing the proof.
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6 Law of Large Numbers for o(n) Initially Infected Vertices
In this section we prove Theorem 2.13, the law of large numbers for the final size starting from
one (or o(n)) many initially infected vertices. In order to do so, we use a branching process
approximation and martingale analysis for the initial phase of the epidemic to show that with high
probability the epidemic either dies out or reaches size Θ(n). This puts us in the setting of Theorem
2.6, which we then use alongside results from Section 5 to prove the LLN result.

6.1 Branching Process Approximation for the Initial Phase

The infection tree of the initial phase of the epidemic on the Poisson SBM starting from one, ran-
domly seeded, initially infected node is well-approximated by a continuous time branching process.
Consider the following dynamics:

• The branching process starts with one infected node v0 chosen randomly from all nodes of
label k and Pois(Dk) active half-edges attached to it.

• Infected nodes infect down active half-edges at rate η, independently for all active half-edges.
When a half-edge emanating from a vertex u of label k′ passes down the infection, a new
infected vertex v with label ℓ chosen with probability pk′→ℓ = 1

Dk
Wk′ℓ

nℓ
n is born, and the

active half-edge gets replaced by an (inactive) full edge uv. Finally, v is given Pois(Dℓ) new
active half-edges.

• Infected vertices recover at rate γ. Once a vertex recovers, all active half-edges emanating
from this vertex get deleted, while the inactive (full) edges remain.

Observe that the tree generated from the dynamics above, represented by vertices labelled by
group membership and state at time t (infected or recovered) and inactive edges between such
vertices is equal to T

BP(M̂)
k (t), with

M̂ = Wdiag(n/n).

Throughout this section, we will usually omit the reference to M̂ and just use the notation T BP
k (t).

We will further slightly abuse notation by including the currently active half-edges as part of the
tree T BP

k (t), while in Section 2 these were not included.
Let T BP

k (t) be the tree generated by the dynamics described above at time t, represented as
a tree with vertices labelled by group membership and the state at time t (infected or recovered),
and edges labelled as active or inactive. Let T PSBM

k (t) be the SIR infection tree starting from a
vertex in community k on G ∼ PSBM(V , W ), again including the active half-edges.

We can construct the process T PSBM
k (·) from the process T BP

k (·) as follows: generate a sample
(T BP

k (t))t≥0 from the coupling described at the beginning of this section, but each time an infection
passes along an edge uv in T PSBM

k (·), delete the edge with probability hℓ(t−), where hℓ(t−) :=
1 − Sℓ(t−)/nℓ, t is the time the edge transitions from active to inactive in T BP

k (·), t− indicates a
limit from the left, and ℓ is the label of v in T BP

k (t). This takes into account the fact that edges
only appear in the SIR infection tree when the endpoint is connected to a susceptible individual,
and couples the infection tree of PSBM, T PSBM

k (t), to the branching process tree T BP
k (t) in such

a way that T PSBM
k (t) is a sub tree of T BP

k (t) for all t ∈ [0, ∞). Since Sℓ(t) decreases by 1 precisely
when a new vertex with label ℓ is added to T PSBM

k (t), we have that hℓ(t) is equal to 1
nℓ

times
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the number of vertices of label ℓ in T PSBM
k (t), showing in particular that T PSBM

k (t) is a Markov
Process.

The above construction implies that |T PSBM
k (t)| ⪯ |T BP

k (t)|, where ⪯ means stochastic domina-
tion in the usual sense. It also implies that whenever |T PSBM

k (t)| = |T BP
k (t)|, then |T PSBM

k (t′)| =
|T BP

k (t′)|, and in fact T PSBM
k (t′) = T BP

k (t′), for all t′ ≤ t.

Lemma 6.1. Let Nn be such that Nn/
√

n → 0 and assume that lim infn→∞
nk
n > 0 for all k. Under

the above coupling

P
(
T PSBM

k (t) = T BP
k (t) for all t such that |T BP

k (t)| ≤ Nn

)
→ 1 as n → ∞.

Proof. Order the vertices in the branching process T BP
k (·) by their time of arrival, with 1 being

the label of the root, 2 the label of the next vertex to arrive, etc. Let ti be the arrival time of
vertex i, k(i) its community label, vi be the label of its parent in T BP

k (·), and fℓ(i) be the number
of vertices of group label ℓ in T BP

k (·) that have arrived before vertex i (not including i).
We can imagine generating the SIR tree from T BP

k (·) as follows: when vertex i gets born in
T BP

k (·), leading to a new edge (vi, i) in T BP
k (·), we assign a random variable Zi ∼ Bern(1 −

hk(i)(ti−1)) to the edge (vi, i). If Zi = 1, then we keep the edge in the SIR tree, otherwise we
remove the edge. More precisely, we obtain the tree T PSBM

k (t) by taking the connected component
of the root obtained once we remove all edges with Zi = 0. Our goal is to prove that

P (Zi = 1 for all i = 1, . . . Nn) → 1 as n → ∞,

since that implies the statement of the lemma.
Note that in general, the random variables Zi are not independent, even when conditioned on

T BP
k (·), since hk(i)(ti−1) depends on the tree T PSBM

k (ti−1), which in turn depends on the previous
variables Z1, . . . , Zi−1:

hk(i)(ti−1) = 1
nk(i)

fk(i)(i) −
i−1∑
j=1

(1 − Zj)1k(j)=k(i)

 .

However, if we condition on T BP
k (·) and the event Z1 = Z2 = · · · = Zi−1 = 1, then hk(i)(ti−1) =

fk(i)(i)/nk(i) and the conditional probability that Zi = 1 becomes

1 − fk(i)(i)/nk(i) ≥ 1 − (i − 1)/nk(i).

Rewriting the probability of the event that Z1 = Z2 = · · · = ZNn = 1 as a product of conditional
probabilities, we therefore get that

P
(

Nn∏
i=1

Zi = 1
∣∣∣∣T BP

k (·)
)

=
Nn∏
i=1

(
1 −

fk(i)(i)
nk(i)

)
≥

Nn∏
i=1

(
1 − i − 1

nk(i)

)
≥ 1 −

Nn∑
i=1

i − 1
nk(i)

≥ 1 − Nn(Nn − 1)
mink nk

= 1 − O(N2
n/n).

This implies

P
(

Nn∏
i=1

Zi = 1
)

= EBk(·)

[
P
(

Nn∏
i=1

Zi = 1
∣∣∣∣T BP

k (·)
)]

≥ 1 − Nn(Nn − 1)
mink nk

= 1 − O(N2
n/n),

proving the lemma.
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Lemma 2.12 is an immediate corollary of Lemma 3.4 and Lemma 6.1.

Proof of Lemma 2.12. In view of Lemma 3.4 and Lemma 6.1, all we need to do is to couple the
two process T

BP(M)
k (t) and T

BP(M̂)
k (t) with M = Wdiag(s) and M̂ = Wdiag(n/n) in such a way

that they are equal with high probability as long as, say, the first one has not too many vertices.
Formally, we proceed as follows: we label vertices in the two processes by their order of arrival

in the infection tree, with both of them starting at vertex v = 1 at time t = 0. We then iteratively
couple the two processes as follows: if up to the time ti when vertex i got infected in T

BP(M)
k (·)

the two processes are identical, then we use the same random variable Ti ∼ Exp(γ) for the recovery
time of i. Furthermore, we couple the set of children of i in BP(M) and BP(M̂) by optimally
coupling the random variables Pois(Mk(i)ℓ) and Pois(M̂k(i)ℓ) such that they are equal for all ℓ with
probability 1 − O(εn), where εn = ∥s − n

n ∥1. If they are equal, we use the same random variables
to determine the infection times along the edges emanating from i for both processes; if they are
not, we run the two process independently from there on.

Let Ai be the event that up to the time when vertex i in T
BP(M)

k (·) gets infected, both process
have identical histories. Then P(Ai+1 | Ai) = 1 − O(εn), showing that

P(Ai) = 1 − O(iεn).

To complete the proof, we use Assumption 2.5, to find a deterministic sequence Nn → ∞ with
n → ∞ such that εnNn → 0 in probability. This implies that

P(ANn) → 1 in probability as n → ∞.

(Note P(ANn) is random due to the possibly random starting conditions allowed by Assumption 2.5).
Together with Lemma 3.4 and Lemma 6.1, this proves Lemma 2.12.

Remark 6.2. Observe that the coupling described at the beginning of this section and the results
in Lemma 6.1 and Lemma 2.12 are robust to the starting conditions of the epidemic. Suppose that
are ζ = O(1) many initially infected vertices. Then couple the epidemic to a forest of branching
processes in the following way: start a branching process T BP

k(v)(t) from each initially infected vertex
v ∈ ζ. Then proceed as described in the beginning of this section, removing edges with probability
hℓ(t−) each time an infection event occurs into community ℓ. It is clear that Lemma 6.1 immediately
generalizes and the epidemic and forest are exactly equal with high probability until the size of the
epidemic is of order Nn.

Next, we will show that either the infection dies out, or there is a "large outbreak" of the SIR
epidemic on the PSBM – in which case a constant fraction of the vertices are infected, and the
differential equation approximation proved in Section 4 applies. To this end, it will be convenient
to switch from the continuous time Markov chain defining the SIR epidemic to a discrete time
Markov chain.

6.2 Martingale Bounds and Discrete Time Markov Chain

In this section we will prove the following theorem using a submartingale concentration bound for
a suitably defined discrete time Markov chain. Throughout this subsection we will assume that W
is irreducible, and that the initial conditions satisfy Assumption 2.5.
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Theorem 6.3. Consider the SIR epidemic on G ∼ SBM(V , W ) or G ∼ PSBM(V , W ), and let

τε = min{t : S(t) ≤ S(0) − ⌈εS(0)⌉}.

If R0 > 1, then there exist constants ε0 > 0 and 0 < ζ1 < ζ2 < ∞ such that for 0 < ε ≤ ε0, the
following statements hold

(a) if I(0) p→ ∞ and I(0)/n
p→ 0 as n → ∞, then with probability tending to 1 as n → ∞

τε < ∞ and ζ1εS(0) ≤ ∥X(τε)∥1 ≤ ζ2εS(0).

(b) if I(0) is bounded in probability and Nn
p→ ∞, then with probability tending to 1 as n → ∞

∃t s.th. S(0) − S(t) ≥ Nn ⇒ τε < ∞ and ζ1εS(0) ≤ ∥X(τε)∥1 ≤ ζ2εS(0).

To define the discrete time Markov chain used in the proof of the theorem, we observe that
the continuous time SIR epidemic on the Poisson stochastic block model is a Markov Chain where
elements, ξ, of the state space Ω can be represented as follows:

ξ = {Sk, Id
k , Rk; k ∈ [K], d ∈ N}.

Sk, Rk are the number of susceptible and recovered nodes in community k, respectively, and Id
k is the

number of infected nodes in community k with active degree d. First, we make a few observations.
Notice that Ik = ∑∞

d=0 Id
k is the number of infected nodes in community k. Also, Xk = ∑∞

d=0 dId
k is

the number of active edges in community k. Since infected nodes with active degree zero have no
bearing on the course of the epidemic, for our purposes, it will be useful to work with the following
state space that omits such vertices:

ξ̃ = {Sk, Ad
k; k ∈ [K], d ∈ N}

where A0
k = Rk + I0

k and Ad
k = Id

k for all d ≥ 1. We now construct a discrete time Markov
Chain based on the jumps of the continuous time Markov Chain. Let Ak = ∑

d≥1 Ad
k, A = ∑

k Ak,
Xk = ∑

d dAd
k and X = ∑

k Xk.
For this section, let T ∈ N denote our discrete time steps, with T incrementing by 1 whenever

the state of the continuous time chain changes. The rate at which this happens is then equal
to Γ(t) = γA(t) + ηX(t), where t denotes the time in the continuous-time epidemic. We use
(Sk(T ), Ad

k(T ))k,d to represent the state of the chain at time T . We start the chain at time T = 0
with one initially infected vertex of label k0 and active degree d0 ∼ Pois(Dk0), i.e., Sk(0) = nk −δkk0

and Ad
k(0) = δkk0δdd0 where δnm is the Kronecker-Delta.

Whenever T increments in the discrete time chain, it corresponds to one of the following events:

• with probability γAk(T )
Γ(T ) , a node chosen uniformly at random among all infected nodes with

active degree d ≥ 1 in community k recovers. In particular, a node with active degree d ≥ 1
in community k is chosen with probability Ad

k(T )/Ak(T ). In this case,

Ad
k(T + 1) = Ad

k(T ) − 1, Ad−1
k (T + 1) = Ad−1

k (T ) + 1 and Xk(T + 1) = Xk(T ) − d. (36)
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• with probability ηXk(T )
Γ(T ) , choose an active edge uniformly at random among all active edges

in community k to attempt infection across an edge. In particular, an edge is chosen with
probability dAd

k(T )/Xk(T ) for d ≥ 1. In this case,

Ad
k(T + 1) = Ad

k(T ) − 1, Ad−1
k (T + 1) = Ad−1

k (T ) + 1, and Xk(T + 1) = Xk(T ) − 1. (37)

– In this case, we also select the endpoint that the active edge infects and this infection
event is successful with certain probability. With probability WkℓSℓ

nDℓ
, we choose a suscep-

tible vertex in community ℓ to infect, and we give it d′ ∼ Pois(Dℓ) new active edges. In
this case, the infection is successful and in addition to the changes to the system as in
Eq. (37), we also have that

Sℓ(T + 1) = Sℓ(T ) − 1, Ad′
ℓ (T + 1) = Ad′

ℓ (T ) + 1, and Xℓ(T + 1) = Xℓ(T ) + d′. (38)

– If the infection is not successful, no further action is taken.

Let E n be a realization of this Markov chain, let FT be the natural filtration of this chain,
and let X(T ) be the row vector X(T ) = (X1(T ), . . . , XK(T )). Then the expectation of X(T + 1)
conditioned on FT is easily calculated, giving

E[X(T + 1) | Ft] = X(T ) + η + γ

Γ(T )
(
X(T )C1(T ) − X(T )

)
, (39)

where C1(T ) is the matrix with matrix elements

(C1)kℓ(T ) = η

η + γ
DkWkℓ

Sℓ(T )
nDℓ

.

Note that zero is an absorbing state for the chain E n; if X(T ) reaches 0 (and therefore A(T ) also
reaches 0), then the chain dies and remains at 0 forever. In order to aid in the analysis, we construct
another Markov Chain on the same state space, Ω, that restarts whenever the chain hits zero.

Definition 6.4 (Restarted Discrete Time Chain). Let En be a draw from the Markov Chain de-
scribed above. The restarted chain, E

(1)
n , is a Markov Chain on Ω that is identical to En up to

the random time τ when X(τ) = 0. If Sk0(τ) = 0, the chain stops, otherwise restart E
(1)
n

with the current drift probabilities according to another copy of En drawn independently, with
Sk(τ + 1) = Sk(τ) − δkk0 and Ad

k(τ + 1) = δkk0δdd0 where d0 is a fresh sample from Pois(Dk0). If
the restarted chain hits zero again, we again restart it in the same way, until Sk0 = 0, at which
point the chain stops. We denote the active half-edges in the restarted chain by X(1)(T ) and the
natural filtration of the restarted chain by (F (1)

T )T ≥0.

Note Eq. (39) holds for the restarted chain as well, except when X(1)(T ) = 0, in which case

E[X(1)
k (T + 1) | F

(1)
T ] = δkk0Dk0 . (40)

In a later analysis, we will construct a submartingale from X(1)(T ) and prove a concentration
result for that submartingale. Observe that at each discrete time step, the change in |X(1)(T )| is
determined by one Poisson random variable, which has unbounded increments. In order to prove
concentration for the submartingale, it will be convenient for us to introduce the following, slightly
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modified, version of the discrete time chain, which has bounded increments. Here, we truncate the
value of the Poisson increments by making the initially drawn degree of a newly infected vertex in
community k the minimum of a Pois(Dk) random variable and some parameter ζL, which we will
later choose to be conveniently large enough such that the truncated process is equal to the original
process with high probability.

Definition 6.5 (Restarted, Truncated Discrete Time Chain). Let E
(2)
n be a Markov Chain on Ω,

constructed in the same way as E
(1)
n , but when a susceptible vertex v is infected as described in the

beginning of this section, its active degree is given by d′ ∼ Pois(Dk(v)) ∧ ζL for some parameter ζL.
Denote the active edges of this process by X(2)(T ) and the natural filtration by (F (2)

T )T ≥0.

Notice that Eq. (39) holds for X(2)(T ) as well with C1 replaced by C2 where

(C2)kℓ(T ) = η

γ + η
E[Pois(Dk) ∧ ζL]Wkℓ

Sℓ(T )
nDℓ

except for when X(2)(T ) = 0, in which case we have

E[X(2)
k (T + 1) | F

(2)
T ] = δkk0E[Pois(Dk0) ∧ ζL].

Recall that in the context of Section 6.1 and Lemma 2.12, we defined

R0 = λmax

(
η

η + γ
Wdiag(s(0))

)
.

Since similar matrices have the same eigenvalues, we can also express R0 as

R0 = λmax(C0) where (C0)kℓ = η

γ + η
DkWkℓ

sℓ(0)
Dℓ

.

By Perron-Frobenius, we can find a normalized right eigenvector v with strictly positive entries
such that C0v = R0v. Furthermore, by Assumption 2.5, we have that C1(0)v p→ R0v as n → ∞.
Thus with probability tending to 1,

(C1(0)v)k ≥ 5R0 + 1
6 vk for all k ∈ [K].

Lemma 6.6. Assume that R0 > 1 and C1(0)v ≥ 5R0+1
6 v component wise. Choose ζL sufficiently

large so that
min

k

E[Pois(Dk) ∧ ζL]
Dk

≥ 5
6 + 1

6R0
, (41)

let
ε ≤ ε0 = mink Sk(0)

6S(0)

(
1 − 1

R0

)
,

let τ2 be the stopping time

τ2 := inf{T ≥ 0 : S(2)(T ) ≤ ⌊(1 − ε)S(0)⌋},

and let H2(T ) = X(2)(T )v − ζ0T where

ζ0 = 1
2 min {R0 − 1, Dmin} vmin,

with Dmin = mink Dk and vmin = mink vk. Then H2(T ∧ τ2) is a submartingale.
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Proof. Let E
(2)
n be a realization of the Markov Chain from Definition 6.5, and let

M2(T ) = H2(T ∧ τ2).

We will prove that E[M2(T + 1) | F
(2)
T ] ≥ M2(T ). Notice that {τ2 ≤ T} is measurable with respect

to F
(2)
T . We consider three cases:

(i) T ≥ τ2
In this case, M2(T + 1) = M2(T ) and the inequality holds as an equality.

(ii) T < τ2 and X(2)(T ) = 0
In this case, we have that M2(T ) = H2(T ) and M2(T + 1) = H2(T + 1). If X(2) = 0, then
we have

E[H2(T + 1) | F
(2)
T ] = E[X(2)(T + 1)v | F

(2)
T ] − (T + 1)ζ0 ≥ ζ0T = H2(T )

where we used that E[X(2)(T + 1)v | F
(2)
T ] = E[Pois(Dk0) ∧ ζL]vk0 ≥ ζ0 by our assumption

on ζL.

(iii) T < τ2 and X(2)(T ) ̸= 0
In this case, we also have that M2(T ) = H2(T ) and M2(T + 1) = H2(T + 1). If X(2) ̸= 0,
then

E[H2(T + 1) | F
(2)
T ] = H2(T ) − ζ0 + η + γ

Γ(T )
(
X(2)(T )C2(T ) − X(2)(T )

)
v.

Let ε̃ = 1 − 1/R0. Using the condition T < τ2, we know that S(2)(T ) ≥ S(0)(1 − ε) which
implies that for all ℓ ∈ [K]

Sℓ(0) − Sℓ(T ) ≤ S(0) − S(T ) ≤ ε0S(0) ≤ ε̃

6Sℓ(0).

As a consequence, C1(T )v ≥
(
1 − ε̃

6

)
C1(0)v ≥

(
1 − ε̃

6

)
5R0+1

6 v and

C2(T )v ≥
(5

6 + 1
6R0

)
C1(T )v ≥

(5
6 + 1

6R0

)(
1 − ε̃

6

) 5R0 + 1
6 v

=
(

1 − ε̃

6

)3
R0v ≥

(
1 − ε̃

2

)
R0v = R0 + 1

2 v

component wise. This in turn implies that

E[H2(T + 1) | F
(2)
T ] ≥ H2(T ) − ζ0 + η + γ

Γ(T )
R0 − 1

2 X(2)(T )v

≥ H2(T ) − ζ0 + R0 − 1
2 vmin ≥ H2(T )

where in the last line we used that Γ(T ) ≤ (η + γ)∥X(2)(T )∥1.
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Remark 6.7. Note that the proof of the lemma never uses that we started with one initially infected
vertex. In fact, we can start from an arbitrary starting configuration (Sk(0), Ad

k(0))k,d and define
the restarted chain as before, always restarting with one infected vertex with label k0, even when the
starting configuration at time T = 0 is arbitrary. The previous lemma still holds. We will use this
fact in the proof of the next lemma.

Lemma 6.8 (Concentration for Sub-Martingale). Let

τ1 := inf{T ≥ 0 : S(1)(T ) ≤ ⌊(1 − ε)S(0)⌋}

Under the assumptions of Lemma 6.6,

P (H1(T ∧ τ1) − H1(0) ≤ −λ) ≤ exp
(

−λ2

2T (ζL + ζ0)2

)
+ (I(0) + (T ∧ ⌈εS(0)⌉)) e7∥W ∥∞−2ζL

where H1(T ) = X(1)(T )v − ζ0T .

Proof. Let E
(1)
n be a draw from the restarted Markov Chain in Definition 6.4 and let E

(2)
n be a draw

from the truncated, restarted Markov Chain in Definition 6.5. Observe that

P (H1(T ∧ τ1) − H1(0) ≤ −λ) ≤ P (H2(T ∧ τ1) − H2(0) ≤ −λ)
+ P (H1(T ∧ τ1) ̸= H2(T ∧ τ1) or H1(0) ̸= H2(0)) .

(42)

Since the increments of H2(T ) are bounded by ζ0 + ζL, the first term in Eq. (42) can be bounded
using Azuma-Hoeffding giving

P (H2(T ∧ τ1) − H2(0) ≤ −λ) ≤ exp
(

−λ2

2T (ζL + ζ0)2

)
.

Now consider the second term in Eq. (42). Observe that the only case in which H1 can differ
from H2 is if one of the Poisson degrees are larger than ζL up to time T ∧ τ1. Thus, letting
Zi ∼ Pois(maxk Dk) and observing that the number of Poisson random variables drawn in E

(1)
n up

to time T ∧ τ1 is at most I(0) + T ∧ (S(τ) − S(0)) ≤ I(0) = T ∧ (⌈εS(0)⌉) = NT , we may proceed
as in the proof of Lemma 4.4 to conclude that

P (H1(T ∧ τ2) ̸= H2(T ∧ τ2) or H1(0) ̸= H2(0)) ≤ P
(

max
i=1,...,NT

Zi > ζL

)
≤ NT e7∥W ∥∞−2ζL

We are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. We start by proving the upper bounds on ∥X(T )∥1. To this end, we observe
that for every change in ∥X(T )∥1, one of two events can happen: either a vertex recovers (removing
however many active edges are left attached to it), or a half-edge successfully infects another vertex
and gives rise to a new Poisson random variable. Since the total number of infection events between
t = 0 and t = τε is equal to S(τε) − S(0) = ⌈εS(0)⌉ and the number of initially infected vertices is
equal to I(0), the random variable ∥X(T )∥1 is stochastically dominated by a sum of I(0)+ ⌈εS(0)⌉
independent Pois(D) random variables, where D := maxk Dk. Since εS(0) p→ ∞ and I(0)/εS(0) p→
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0, Poisson concentration implies that with probability tending to 1, ∥X(T )∥1 ≤ ζ2εS(0) as long as
ζ2 > D.

To prove the lower bounds and the finiteness of τε, we switch to the discrete time chains En

defined in Eq. (36), Eq. (37), and Eq. (38). As we will see, the submartingale concentration bounds
for the restarted chain E

(1)
n in Lemma 6.8 imply that

P
(
X(1)(T )v >

ζ0T

2 if T ≤ τ1

)
→ 1 (43)

in case (a), and
P
(
X(1)(T )v >

ζ0T

2 if Nn ≤ T ≤ τ1

)
→ 1 (44)

in case (b). This shows that with high probability, the restarted chain stays bounded away from
zero up to the stopping time τ1 when S(1)(τ1) = S(0)−⌈εS(0)⌉ in case (a), and for all times between
the time T0 when S(1)(T ) = S(0) − Nn and the time τ1 when S(1)(τ1) = S(0) − ⌈εS(0)⌉ in case (b)
(note that T ≥ T0 implies T ≥ Nn since each step in the discrete chain decreases S by either 0 or
1). But if the restarted chain does not hit zero before S(T ) ≤ S(0) − ⌈εS(1)(0)⌉, the original chain
does not hit 0 before this time either, showing that up to this point, the two are the same, which in
particular shows that τ0 = min{T ∈ N : S(T ) ≤ S(0) − ⌈εS(0)⌉} < ∞ or equivalently that τε < ∞
in the continuous time chain. The lower bounds in both cases follow by using the lower bounds in
Eq. (43) and Eq. (44) at T = τ1, giving that with probability tending to 1,

∥X(τε)∥1 ≥ X(τε)v
vmax

= X(1)(τ1)v
vmax

≥ X(0)v + ζ0τ1
2vmax

≥ ζ0
2vmax

εS(0).

This gives the desired the lower bounds with ζ1 = ζ0/2vmax.
We are left with the proof of the bounds Eq. (43) and Eq. (44). Let

M1(T ) = H1(T ∧ τ1) with H1(T ) = X(1)(T )v − ζ0T.

Using Lemma 6.8 with λ = 1
2(M1(0) + ζ0T ) = 1

2(X(1)(0)v + ζ0T ) and an appropriately chosen ζL

(to be determined later), we get that

P (M1(T ) − M1(0) ≤ −λ) ≤ exp
(

−(X(1)(0)v + ζ0T )2

8T (ζL + ζ0)2

)
+ (I(0) + T )e7∥W ∥∞−2ζL (45)

provided ζL is large enough to guarantee that Assumption 41 from Lemma 6.6 holds.
Starting with case (a), we set T0 = ⌈I(0)1/3⌉ and ζL = T 1/3 ∨ T

1/3
0 , observing that Assumption

41 from Lemma 6.6 holds for all large enough n by monotone convergence and the fact that ζL → ∞.
Using the fact that ∑T ≥T0 f(T ) ≤

∫∞
T0

f(T )dT + supT ≥T0 f(T ) whenever f is unimodal, the bound
(45) implies that

∑
T ≥T0

P (M1(T ) − M1(0) ≤ −λ) ≤
∫ ∞

T0

[
exp

(
−ζ2

0T

8(ζL + ζ0)2

)
+ (I(0) + T )e7∥W ∥∞−2ζL

]
dT + o(1)

(46)
The integral of the first term is of order O

(
T

2/3
0 e−Θ(T 1/3

0 )
)

which goes to 0 with n, while the

integral of the second term in the bound is of order O
(
T

2/3
0 (I(0) + T0)e−T

1/3
0
)
. Using the fact that

I(0) ≤ T 3
0 , we see that this term goes to 0 as well.
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Finally, we sum the bound Eq. (45) from 0 to T0 − 1 using our choice of ζL and T0:

∑
T <T0

P(M1(T ) − M1(0) ≤ −λ) ≤
∑

T <T0

[
exp

(
−(X(1)(0)v)2

8T (ζL + ζ0)2

)
+ (T 3

0 + T )e7∥W ∥∞−2ζL

]

≤ T0 exp
(

−(X(1)(0)v)2

8T0(T 1/3
0 + ζ0)2

)
+ (T 4

0 + T 2
0 )e7∥W ∥∞−2T

1/3
0 .

Here, the second term clearly goes to 0 with n. To see that the first goes to zero, note that X(1)(0)v
is a weighted sum of I(0) independent Poisson random variables with expectation bounded from
below by I(0)Dminvmin, showing that X(0)v ≥ Θ(I(0)) with probability tending to 1 as n → ∞.
Together, these bounds imply that

P
(
X(1)(T )v >

X(0)v + ζ0T

2 for 0 ≤ T ≤ τ1

)
≥ 1 − P(there exists T s.th. M1(T ) − M1(0) ≤ −λ) n→∞−−−→ 1,

establishing the bound Eq. (43).
To prove the bound Eq. (44), we again use the bound Eq. (46), this time with T0 = Nn. Indeed,

bounding the integral of the two terms as before, and using that now I(0) is bounded, the right
hand side is again of order o(1), implying that

P
(
X(1)(T )v >

X(0)v + ζ0T

2 for Nn ≤ T ≤ τ1

)
n→∞−−−→ 1

as required.

The arguments above prove Theorem 6.3 for G ∼ PSBM(V , W ′). By conditioning on G being
simple, we can immediately extend the results to any G ∼ SBM(V , W ) with W depending on W ′

as in Lemma 3.1.

6.3 Final Size

As we can see from the results obtained in the last two subsections, if the epidemic starts with a
constant, non-zero number of initially infected vertices, then a constant fraction of the population
ends up being infected with probability converging to the survival probability of the branching
process (forest) ⋃v∈V I(0) T BP

k(v), while for an initial infection of size which goes to infinity but is
o(n), this probability goes to 1 as long as R0 > 1.

In this subsection, we will connect these results to those derived in Section 5 to prove Theo-
rem 2.13 on the final size of an infection starting with o(n) initially infected vertices. We will need
one additional lemma.

Lemma 6.9. Assume that W is irreducible, and that sk(0) > 0 for all k. Let θk be the survival
probability of the backward process defined in Eq. (9) and Eq. (10), let s̃(t) and x̃(t) be the solution
to the differential equations Eq. (3) and Eq. (4) with initial conditions s̃(0) and x̃(0) ̸= 0, and let
s̃(∞) = limt→∞ s̃(t). If x̃(0) → 0 and s̃(0) → s(0), then s̃(0) − s̃(∞) → diag(θ)s(0).
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We will prove the lemma in Appendix A by expressing s(∞) in terms of the backward process
defined in Section 5.2 and then showing that the survival probability of that backwards process
converges to that of the backward process defined in Eq. (9) and Eq. (10) as x̃(0) → 0 and
s̃(0) → s(0).

Proof of Theorem 2.13.
We first prove the theorem when R0 ≤ 1, in which case θ = 0, and our goal is to show that
1
n (S(0) − S(∞)) → 0 in probability as n → ∞. As it turns out, this will be an easy consequence
of Theorem 2.8 and the following claim, which states that the final size of the epidemic, |V R(∞)|,
increases if the set of initially infected vertices increases.

Claim 6.10. Consider the SIR epidemic on an arbitrary graph G = (V, E), let V I(0) and V S(0) be
the set of initially susceptible and infected vertices, respectively, and let V R(∞) be the final set of
recovered vertices. If we add a set W ⊂ V S(0) to the set of infected vertices, then the SIR dynamic
with these new initial conditions can be coupled to the original one such that the new final set of
recovered vertices, Ṽ R(∞), is a superset of V R(∞).

Proof. Consider the following construction of the set V R(∞), starting from V R(∞) = V R(0).

(i) Add all vertices v ∈ V I(0) to V R(∞) and color them red initially.

(ii) For every red vertex, draw its recovery time Tv ∼ Exp(γ) and for every edge incident to
v, draw the infection time Zv,i ∼ Exp(η) where i ∈ {1, . . . , |N(v)|} and N(v) is the set of
neighbors of v. Once a vertex has been explored, color it black.

(iii) For all i ∈ N(v) such that Zv,i < Tv, color them red and add i to V R(∞). Repeat step (ii).

(iv) Repeat steps (ii) and (iii) until the infection ends (i.e. there are no more new vertices reachable
from step (ii)).

While the order in which vertices added to V R(∞) is not necessarily the same as the one in which
they get added in the course of the continuous time epidemic, it is easy to see (and well known)
that the final set V R(∞) is correctly obtained by the above construction. The construction also
makes it obvious that |V R(∞)| can only become larger if we add vertices to the initial set of infected
vertices.

Thus, we may assume that we start with more infected vertices and the final size with these new
starting conditions will be an upper bound on the final size with the original starting conditions.
This in turn will put us into the setting of Theorem 2.8. Concretely, choose ε̂ > 0 arbitrary.
By Lemma 6.9 and the fact that θ = 0, we can choose ε > 0 such that whenever ∥x̃(0)∥2 ≤ ε
and ∥s̃(0) − s(0)∥2 ≤ ε, we have that s̃(0) − s̃(∞) ≤ ε̂/2. Next we change the initial conditions,
raising the number of infected vertices from Ik(0) = o(n) to Ĩk(0) = ⌊ ε

2K n⌋ and decreasing Sk(0)
to S̃k(0) = Sk(0) + Ik(0) − Ĩk(0). With probability tending to 1 as n → ∞, we then have that
Ĩk(0) ≥ Ik(0), implying that

Sk(0) − Sk(∞) ≤ S̃k(0) − S̃k(∞).

Furthermore, with the help of Assumption 2.5, we have that 1
n Ĩk(0) p→ x̃k(0) = ε

2K and 1
n S̃k(0) p→

s̃k(0) = sk(0) − ε
2K , which implies that with probability tending to 1, the solution of differential
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equations with starting conditions s̃(0) and x̃(0) = ĩ(0) obey the bound

s̃(0) − s̃(∞) ≤ ε̂

2 .

With the help of Theorem 2.8 we conclude that with probability tending to 1 as n → ∞

1
n

(Sk(0) − Sk(∞)) ≤ 1
n

(S̃k(0) − S̃k(∞)) ≤ s̃(0) − s̃(∞) + ε̂

2 ≤ ε̂.

Since ε̂ > 0 was arbitrary, this implies that 1
n(Sk(0) − Sk(∞)) p→ 0, as desired.

Next we consider the case when R0 > 1 and I(0) is bounded in probability. In this case, the
existence of the limit π in Theorem 2.13 implies convergence of I(0) in probability, with π being the
survival probability of a branching forest consisting of the disjoint union of I(0) independent trees
T BP

k(v), v ∈ V I(0). On the other hand, if Nn → ∞, the survival probability of this branching forest
is the limit of it growing to size at least Nn, which by Lemma 6.1 and Remark 6.2 is asymptotically
equal to the probability that there exists some t < ∞ such that S(0) − S(t) ≥ Nn provided Nn

is chosen appropriately. Consider the stopping time τε defined in Theorem 6.3. By the second
statement of the theorem, we then get that for ε > 0 small enough,

π = lim
n→∞

P(∃t < ∞ s.th. S(0) − S(t) ≥ Nn) = lim
n→∞

P(τε < ∞). (47)

Furthermore, conditioned on τε < ∞, we have that with high probability

|s(0) − ŝ(τε)| ≤ 2εs(0) and ζ̃1εs(0) ≤ ∥x̂(τε)∥1 ≤ ζ̃2εs(0)

for some constants 0 < ζ̃1 < ζ̃2 < ∞. Here we moved from the statements in Theorem 6.3 for S(t)
and X(t) to those for x̂k(t) = Xk(t)

nDk
and ŝ(t) = S(t)

n by absorbing factors of 1
Dmax

and 1
Dmin

into
ζ̃1 and ζ̃2 and using Assumption 2.5 to control the difference between ŝ(0) and s(0). Finally, note
that with high probability

ŷτε ∈ U0 and max
u∈V

du(τε) ≤ log n

since by Lemma 4.4 these statements actually hold for all t. Defining the compact set

Cε = {ỹ(0) ∈ U0 : |s(0) − s̃(0)| ≤ 2εs(0) and ζ̃1εs(0) ≤ ∥x̃(0)∥1 ≤ ζ̃2εs(0)}

and the event
Aε = {τε < ∞, ŷτε ∈ Cε and max

u∈V
du(τε) ≤ log n}

we therefore have that

π = lim
n→∞

P(∃t < ∞ s.th. S(0) − S(t) ≥ Nn) = lim
n→∞

P(Aε). (48)

Note that Cε obeys the conditions in Eq. (5.11) provided ε is small enough to guarantee that
|s(0) − s̃(0)| ≤ 2εs(0) implies s̃k(0) > 0 for all k (if needed, we will decrease ε0 to make sure this
holds).
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Let ỹt denote the solution at time t to the differential equations starting at ỹ0 = ŷτε , and let ε̂ >
0 be arbitrary. In view of Lemma 6.9, we can choose ε′

0 > 0 such that |s̃(0)−s̃(∞)−diag(θ)s(0)| ≤ ε′

whenever ε ≤ ε′
0 and ỹ(0) ∈ Cε. For ε ≤ min{ε0, ε′

0, 1
2 ε̂} we then have that

P(∥(s(0) − ŝ(∞)) − diag(θ)s(0)∥2 > 4ε̂ | Aε)
≤ P (∥s(0) − s̃(0)∥2 > 2ε̂ | Aε) + P(∥(s̃(0) − s̃(∞)) − diag(θ)s(0)∥2 > ε̂ | Aε)

+ P(∥s̃(∞) − ŝ(∞)∥2 > ε̂ | Aε).

The first term is 0 since ỹ0 = yτε ∈ Cε implies ∥s(0) − s̃(0)∥2 ≤ ∥s(0) − s̃(0)∥1 ≤ 2εs(0) ≤ ε̂, the
second term is 0 by Lemma 6.9 and the fact that ε ≤ ε′

0, and the last term goes to 0 by Theorem
5.11. Since P(Aε) → π, this proves Theorem 2.13 in the case when R0 > 1 and I(0) is bounded in
probability.

When R0 > 1 and I(0) is not bounded in probability, we in fact have that I(0) p→ ∞ since
otherwise the limit defining π would not exist. But then

π = 1 = lim
n→∞

(Aε),

where the second equality follows by the first statement of Theorem 6.3. The above argument then
again implies the statement of Theorem 2.13.

Finally, we prove Corollary 2.14.

Proof. For the proof of the corollary, we will choose a coupling of TG,v(t) and T
BP(M)

k (t) and a
sequence N ′

n with N ′
n → ∞ and N ′

n ≤ Nn such the statements of Lemma 2.12 hold for N ′
n, i.e.,

P
(
TG,v(t) = T

BP(M)
k (t) for all t such that |T SBM

k (t)| ≤ N ′
n

)
→ 1 as n → ∞.

We start with the case R0 ≤ 1. Then πk = 0 and the branching process T
BP(M)

k (·) dies out in
finite time, implying that with probability tending to 1, T

BP(M)
k (·) ≤ N ′

n. Combined with Lemma
2.12, we conclude that with probability tending to 1, T

BP(M)
k (t) = T SBM

k (t) for all t and

P(S(0) − S(∞) > Nn) ≤ P(S(0) − S(∞) > N ′
n) n→∞−−−→ πk.

This proves (ii) and (i) in the case where R0 ≤ 1, with the exception of the exponentially decaying
tails statement for R0 < 1. To prove that, we first note that the offspring distribution of a
Poisson branching process has exponentially decaying tails. Since T

BP(M)
k (∞) was constructed

as a sub-tree of BPk(M), its offspring distribution has exponentially decaying tails as well. For
R0 < 1, T

BP(M)
k (∞) is therefore a sub-critical branching process whose offspring distribution has

exponentially decaying tails, implying that |T BP(M)
k (∞)| itself has exponentially decaying tails (see

Lemma A.5 for a proof of this fact).
Turning to the case R0 > 1, we first prove the following claim.

Claim 6.11. Let N ′
n = o(n) be a sequence for which the statements from Lemma 2.12 hold, and

assume that R0 > 1. If 0 < ε < θ · s(0), then

lim
n→∞

P(S(0) − S(∞) ∈ (N ′
n, εn)) = 0.
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Proof. Recall that πk is the survival probability of the backward branching process. Then for an
infection starting from one vertex with label k, π = πk. This implies that

lim
n→∞

P(S(0) − S(∞) ≤ N ′
n) = lim

n→∞
P(|T SBM

k (∞)| ≤ N ′
n) = 1 − πk,

or equivalently that
lim

n→∞
P(S(0) − S(∞) > N ′

n) = πk.

Furthermore, Theorem 2.13 implies that

lim
n→∞

P(S(0) − S(∞) ≥ εn) = πk.

Since N ′
n = o(n), {S(0) − S(∞) ≥ εn} ⊆ {S(0) − S(∞) > N ′

n} and we then see that

lim
n→∞

P
(
S(0) − S(∞) ∈ (N ′

n, εn)
)

= 0.

Using the just proven claim, we see that for ε > 0 small enough, the probability that S(0) −
S(∞) > Nn is asymptotically equal to the probability that S(0) − S(∞) > εn, which converges to
πk by Theorem 2.13. This proves (i) in the case where R0 > 1.

To prove (iii), we need to show that for all fixed N < ∞,

P
(
S(0) − S(∞) = N

∣∣∣S(0) − S(∞) ≤ Nn

)
→ P

(
|T BP(M)

k (∞)| = N
∣∣∣ |T BP(M)

k (∞)| < ∞
)
.

But this follows immediately from (i) and Lemma 2.12. Indeed, (i) implies that P(S(0) − S(∞) ≤
Nn) → 1 − πk = P

(
|T BP(M)

k (∞)| < ∞) while Lemma 2.12 together with the fact that Nn → ∞
implies that

lim
n→∞

P
(
{S(0) − S(∞) = N} ∩ {S(0) − S(∞) ≤ Nn}

)
= lim

n→∞
P
(
S(0) − S(∞) = N

)
= P

(
|T BP(M)

k (∞)| = N
)
.

Finally, we prove (iv). It suffices to show that

lim
n→∞

P
(∣∣∣∣S(0) − S(∞)

n
− diag(θ)s(0)

∣∣∣∣ < ε

)
= lim

n→∞
P (S(0) − S(∞) > Nn) .

Let ε ∈ (0,θ · s(0)). Observe that for Nn = o(n) and n large enough, the event{∣∣∣∣S(0) − S(∞)
n

− diag(θ)s(0)
∣∣∣∣ < ε

}
implies {S(0) − S(∞) > Nn}. Thus

P
({∣∣∣∣S(0) − S(∞)

n
− diag(θ)s(0)

∣∣∣∣ < ε

}
∩ {S(0) − S(∞) > Nn}

)
= P

(∣∣∣∣S(0) − S(∞)
n

− diag(θ)s(0)
∣∣∣∣ < ε

)
n→∞−−−→ πk

where the convergence is true by Theorem 2.13. Furthermore

lim
n→∞

P(S(0) − S(∞) > Nn) = πk

by (i) and this gives the desired result.
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7 Discussion
In this section, we discuss our results and relate them to notions like herd immunity, the force
of an infection, and the so-called pair-approximation, concluding with the discussion of possible
extensions. Throughout, we consider the setting where sk(0) > 0 for all k and W is irreducible.

7.1 Herd Immunity

The herd immunity threshold for a disease is the threshold at which the infection starts slowing
down due to the fact that a significant proportion of the (finite) population have been infected,
and new infection attempts are unlikely to lead to a successful infection. Mathematically, this is
the point at which the effective reproductive number falls below one, and new infections die out
exponentially fast.

In the deterministic, homogeneous mixing setting for the SIR epidemic, described by the differ-
ential equations

ds

dt
= −ηsi (49)

di

dt
= γ

(
ηs

γ
− 1

)
i (50)

dr

dt
= γi (51)

the effective reproductive number is given by Reff(t) = ηs(t)/γ, and the herd immunity threshold
is at Reff(t) = 1, below which the number of infected vertices is exponentially decreasing.

To discuss the notions of herd immunity and effective reproductive number for SIR on the
stochastic block model, we recall the vector form of the differential equations for the number of
susceptible vertices and the number of active half-edges for SIR on the SBM:

ds(t)
dt

= −(η + γ)x(t)C(t) (52)

dx(t)
dt

= (η + γ)x(t)(C(t) − 1) (53)

where C(t) = η
η+γ Wdiag(s(t)). As pointed out in Remark 5.6 in Section 5.3, which we rephrase

here to keep our discussion self-contained, the largest eigenvalue of this matrix, Reff(t), is the
appropriate generalization of the effective reproductive number to our setting, with Reff(t) = 1
determining the herd-immunity threshold.

Indeed, if Reff(t0) < 1 and v0 is the corresponding right eigenvector with all positive entries,
then

dx(t)
dt

· v0 = (η + γ)x(t)(C(t) − 1)v0

≤ (η + γ)x(t)(C(t0) − 1)v0

= (η + γ)(Reff(t0) − 1)x(t) · v0 for all t ≥ t0

showing that x(t) · v and hence ∥x(t)∥1 is decaying exponentially in t − t0 for any initial condition
x(t0). As a consequence, a small infection at time t0 will only have small overall impact on the
final size of the infection. By contrast, if Reff(t0) > 1, then x(t) ·v will grow exponentially in t − t0
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until Reff(t) = 1. Thus no matter how small x(t0) is, the infection will always have a sizable effect
on the final size, since the infection won’t start to recede before it has infected enough susceptible
vertices to drive Reff(t) below one.

Notice that here, the parameters that drive the infection are not the number of infected vertices
as in the case of the standard SIR, but rather the numbers of active half-edges in each community
weighted by the connectivity between communities. This quantity differs by community based on
the connectivity in between communities and gives rise to K parameters that govern the trajectory
of the epidemic, one in each community. This implies that the trajectories of the epidemic curves
in different communities may peak at different times, and furthermore that it is possible for the
epidemic to be spreading in a community despite the global herd immunity threshold being reached
in the population.

We make two observations about Reff(t) and its relation to the number of active half-edges
at time t. First, notice that if Reff(t) > 1 then there exists at least one community k such that
dxk(t)/dt > 0. In other words, before the herd immunity threshold, at least one community
experiences exponential growth in the number of half-edges. Second, if Reff(t) < 1, then in at least
one community k, dxk(t)/dt < 0 and there is exponential decay of half-edges in that community.
We can see this as follows: let v0 be the right Perron-Frobenius eigenvector of C(t). If Reff(t) > 1
then

dx(t)
dt

· v0 = (η + γ)x(t)(C(t) − 1)v0

= (η + γ)(Reff(t) − 1)x(t) · v0 > 0.

Since v0 has all strictly positive entries, this implies that at least one component of dx(t)/dt must
be larger than 0. Similarly, in the case where Reff(t) < 1, there must exist some k such that
dxk(t)/dt is less than 0.

Thus, after the herd immunity threshold the number of half-edges in at least one community is
decreasing. Note that eventually all components decay exponentially (we prove this in Lemma B.1
in Appendix B) furthermore, though a small infection at t0 will never grow large this does not
preclude some components of x(t) from growing even after the herd immunity threshold. All we
know is that a small infection can only grow by at most a constant factor before dying out.

7.2 Numerical Simulations for K = 2
In this section, we demonstrate the relationship between the herd immunity threshold and the
various maxima of the components of x and i. In Figure 1 we illustrate the relationship between
Reff(t) and x(t) in the differential equations for a two-community stochastic block model. We start
with a certain proportion, ε, of infected individuals in the first community and plot the curves for
x1(t), x2(t), i1(t), and i2(t). The peaks of each curve are also plotted in relation to the first time t
at which Reff(t) < 1. Observe that the threshold Reff(t) < 1 always occurs between the first and
last peak in the x(t). The first row simulates the ODE with the two communities being the same
size, in which case as ε gets smaller, the trajectory of the curves for the two communities converge.
The last row simulates the ODE for two communities of different sizes, with the contact matrix
W adjusted so that the expected number of edges in each community is the same. For small ε,
the peaks between the two communities are visibly separated, but as ε gets smaller, the peaks get
closer.

44



(a) Simulations for two communities of equal size (s1(0) = s2(0) = 1/2) and W =
(

10 1
1 10

)
.

(b) Simulations for two communities of different sizes (s1(0) = 2/3, s2(0) = 1/3) and W =
(

10 1
1 10

)
.

(c) Simulations for two communities of different sizes (s1(0) = 2/3, s2(0) = 1/3) and W =
(

5 1
1 10

)
so the

expected number of edges within each community is the same.

Figure 1: A simulation of our system of ordinary differential equations on a two-community stochas-
tic block model. We vary parameter values of ε, the initial fraction of infected individuals going
from 0.1, 0.01, 0.001 from the left column to the right column; W , the contact matrix; and s1(0)
and s2(0), the initial proportion of susceptible individuals in each community. For all simulations,
η = γ = 1/2.

Notice that in all of the simulations, in each community the peak of the fraction of infected
individuals occurs after the peak in the number of active half-edges for that community, and
furthermore xk stays below ik for all times t > 0. As the following lemma shows, this is not a
numerical coincidence, but a direct consequence of the differential equations for s, x and i.

Lemma 7.1. Assume that W is irreducible, that sk(0) > 0 for all k ∈ [K], that x(0) > 0, and that
xk(0) = ik(0). Then xk(t) < ik(t) for all t > 0. If we assume in addition that dxk

dt

∣∣∣
t=0

> 0, then
the first local maximum of xk, occurs after the first local maximum of ik.
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While the details of the proof are a little tedious, the basic idea is simple and based on the
observation that

dik

dt
− dxk

dt
= (η + γ)xk − γik,

showing that at least near t = 0, where xk
ik

starts at 1, xk grows slower than ik. To prove our
statement on the local maxima, all one needs to show is that the first point where xk

ik
falls below

γ
η+γ happens after the first local maximum of xk. We will prove this fact in Appendix B, where we
give the complete proof of Lemma 7.1.

In Figure 2 we visualize the LLN behavior for the SIR epidemic on a stochastic block model
with two communities. The figures contain 100 trajectories of the fraction of infected vertices in
simulated epidemics with

W =
(

5 1
1 10

)
, ε = 0.01, η = γ = 1/2.

We sampled networks with size n = 200, 2000 and 10, 000 nodes split equally amongst the two
communities with n1 = n2 = n/2, where n1 and n2 are the number of nodes in community 1 and 2,
respectively. A realization G of the stochastic block model with parameters W, (n1, n2) was drawn
and then an epidemic, in which an ε fraction of the population in community 1 was initially infected
and the remaining nodes were all susceptible, was run on G. The solid lines in the figure depict
the corresponding ODE solutions for i1(t) and i2(t). The stochastic epidemic was simulated using
algorithms from Miller and Ting [2019].

(a) n1 = 100, n2 = 100 (b) n1 = 1000, n2 = 1000 (c) n1 = 5000, n2 = 5000

Figure 2: Simulations for one hundred stochastic SIR trajectories of the fraction of infected indi-
viduals on a stochastic block model with two communities of the same size. From left to right, we
increase the number of nodes in the network keeping the ratio n1

n2
the same. The solid blue and

orange curves are the solution to the differential equations with the same parameters.

7.3 Force of the Infection

From a practical perspective, it is hard to estimate x(t), since this quantity is generated from a
coupling of the SIR epidemic on the SBM and is difficult to interpret in the context of the epidemic.
However, what can be observed is the force of infection. In the epidemiology literature, force of
infection (also called hazard rate or incidence rate) refers to the rate at which susceptible individuals
in a population are infected Vynnycky and White [2010]. In the standard SIR setting, the force of
infection on the susceptible population is given by η I

n , while in our setting, the force of infection
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on susceptible vertices in community k is given by η
∑

ℓ
Xℓ

nDk
Wℓk. Again, observe that the force

of infection is determined by the active half-edges and not by the number of infected individuals
in each community. Denoting the limit of the force of the infection on individuals of with label k
by Fk, we see that in terms of the vector F = (Fk)k∈[K] the limiting dynamics of the epidemic is
described by

ds(t)
dt

= −diag(F (t))s(t) (54)

dF (t)
dt

= (η + γ)F (t)(CT (t) − 1) (55)

with initial conditions for F given by Fk(0) = η
∑

ℓ iℓ(t)Wℓk, and CT (t) denoting the transpose
of C(t). Since CT (t) has the same eigenvalues as C(t), this shows that our discussion of the
herd immunity threshold from the last subsection can equivalently be formulated in terms of the
observable force of the infection, rather than the unobservable number of active half-edges.

7.4 Pair-Approximation

In this paper, we couple the stochastic epidemic on the stochastic block model to a dynamic process
where the graph and the infection are revealed at the same time, allowing us to derive differential
equations for the stochastic epidemic and to understand the parameters that drive the infection.
An alternative, a priori not mathematically rigorous, approach to deriving a system of limiting
ordinary differential equations for the stochastic epidemic is to draw a realization of the graph first
and then use a mean-field approximation, relying on the number of edges connecting individuals
in different compartments. Below, we derive a system of ODEs using the heuristics of one such
mean-field approach: the pair-approximation (cf. Ch.7 of Andersson and Britton [2000] or, Ch.
4 of Kiss et al. [2017]). Note that this approach is conjectured to be exact for locally tree like
graphs, but to our knowledge, this has not been established rigorously [Kiss, Miller, and Simon,
2017; Kiss, Morris, Sélley, Simon, and Wilkinson, 2015; Kiss, Kenah, and Rempala, 2022; Sharkey,
Kiss, Wilkinson, and Simon, 2015].

Our quantities of interest remain the expected number of susceptible, infected, and recovered
vertices in community k at time t. Let G ∼ SBM(V , W ) be a realization of the stochastic block
model on n vertices, let u ∈ [n] be the labels of the nodes of G, and let g be the adjacency matrix of
G. For A ∈ {S, I, R}, let IA

u be the indicator function that u is susceptible, infected, or recovered,
respectively, and let

[Ak]n =
∑

u∈[n]
k(u)=k

IA
u , [AkBℓ]n =

∑
u,v∈[n]
k(u)=k
k(v)=ℓ

IA
u guvIB

v , [AkBℓCm]n
∑

u,v,w∈[n],u̸=w
k(u)=k
k(v)=ℓ

k(w)=m

IA
u guvIB

v gvwIC
w . (56)

We say an edge uv is of type AkBℓ if u has the community label k and is in state A and v has label
ℓ and is in state B, i.e., if uv contributes to [AkBℓ], and similarly for a type AmBkCℓ path uvw.

Assume that all quantities in Eq. (56) when normalized by n converge to deterministic limits
as n → ∞. Observing that the rate at which a given susceptible vertex v becomes infected is equal
to the number of edges joining v to an infected vertex, and that the rate at which infected vertices
recover, is equal to γ, we heuristically obtain the following system of differential equations:

d

dt
[Sk] = −η

∑
ℓ∈[K]

[IℓSk] (57)
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d

dt
[Ik] = η

∑
ℓ∈[K]

[IℓSk] − γ[Ik] = − d

dt
[Sk] − γ[Ik] (58)

with errors which should be o(n) as n → ∞. With a little bookkeeping, this heuristic also gives

d

dt
[IℓSk] = −γ[IℓSk] + η

∑
m∈[K]

[ImSℓSk] − η

[IℓSk] +
∑

m∈[K]
[ImSkIℓ]

 (59)

d

dt
[SℓSk] = −2η

∑
m∈[K]

[ImSℓSk]. (60)

We give a heuristic explanation for Eq. (59), leaving the heurisic derivation of Eq. (60) to the
reader. At rate γ[IℓSk], the infected endpoint in an IℓSk edge recovers and the number of IℓSk

edges decreases by one. At rate η[ImSℓSk] for any m ∈ [K], the infected vertex in an ImSℓSk infects
its Sℓ neighbor and adds an IℓSk edge. At rate η[ImSkIℓ] for any m ∈ [K], an ImSkIℓ set of edges
becomes an ImIkIℓ set of edges and removes an SkIℓ edge. Finally, at rate η[IℓSk] the Iℓ node
infects the Sk node and removes an IℓSk edge.

In the so-called pair-approximation, it is then assumed that we can make the approximation

[AmBkCℓ] = [AmBk][BkCℓ]
[Bk] ,

giving us the following equations

d

dt
[IℓSk] = −(η + γ)[IℓSk] + η

∑
m∈[K]

( [ImSℓ][SℓSk]
[Sℓ]

− [ImSk][SkIℓ]
[Sk]

)
(61)

d

dt
[SℓSk] = −2η

∑
m∈[K]

[ImSℓ][SℓSk]
[Sℓ]

. (62)

Finally, under the assumption that the initially susceptible vertices of type k are a random set of
size [Sk], we can assume that at time 0,

[SkSℓ]t=0 = Wkℓ

n
[Sk]t=0[Sℓ]t=0.

On the other hand, combining Eq. (57) and Eq. (62) and using the symmetry k ↔ ℓ of [SkSℓ], we
get

d

dt

(
[SkSℓ] − Wkℓ

n
[Sk][Sℓ]

)
= −η

∑
m∈[K]

( [ImSℓ]
[Sk] + [ImSk]

[Sℓ]

)(
[SℓSk] − Wkℓ

n
[Sℓ][Sk]

)
(63)

which we can integrate to get that

[SℓSk] = [Sℓ][Sk]Wkℓ

n
(64)

for all t.
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Let [ak] = n−1[Ak] for A ∈ S, I, R and let [yk] = n−1∑
ℓ∈[K][IℓSk]. The pair approximation and

Eq. (64) imply the following system of differential equations:

d

dt
[sk] = −η[yk] (65)

d

dt
[ik] = − d

dt
[sk] − γ[ik] (66)

d

dt
[yk] = −(η + γ)[yk] + η

∑
ℓ

[yℓ]Wℓk[sk] − η

[sk] [yk]2. (67)

As we will see, the time evolution for sk and ik following from these equations is identical to the
time evolution derived rigorously in this paper. To show this, we consider the force of the infection,

Fk = − 1
[sk]

d

dt
[sk] = η

[yk]
[sk]

and use Eq. (64) and Eq. (67) to derive the differential equation

dFk

dt
= −η

[yk]
[sk]2

d[sk]
dt

+ η
1

[sk]
d[yk]

dt
=
(

η
[yk]
[sk]

)2
− (η + γ)

(
η

[yk]
[sk]

)
+ η2∑

ℓ

[yℓ]Wℓk −
(

η
[yk]
[sk]

)2

= −(η + γ)Fk + η
∑

ℓ

Fℓ[sℓ]Wℓk,

which is the time evolution for the force of infection derived rigorously in the previous section.

7.5 Extensions

In this work, we have given a rigorous derivation of the limiting system of ordinary differential
equations for the stochastic SIR epidemic on the stochastic block model. While there are some
general alternative approaches for approximating the epidemic trajectories using e.g. the forward
and backward branching processes of the model (see Barbour and Reinert [2013]; Bhamidi et al.
[2014]) or local graph limits (see Alimohammadi et al. [2023]; Cocomello and Ramanan [2023]), to
our knowledge this paper is first to rigorously establish a system of differential equations for the
limiting behavior allowing for general (including sublinear) starting conditions. Our law of large
numbers results give convergence of the stochastic epidemic to the limiting ODE for all t finite and
infinite, and demonstrate that the infection curves in different communities are driven by different
parameters. In particular, we prove a law of large numbers for the t to infinity limit (final size) of
the epidemic. To prove the final size result, we introduce a novel method using the idea of herd
immunity and the Reff(t) threshold. Our system of ODEs implies the system of ODEs derived
using the pair-approximation, justifying the use of mean-field approximations in this setting.

In our model, we consider a constant rate of infection η across all communities, however a
natural extension would be to vary the rate of infection by community and consider a matrix
η = (ηkℓ)k,ℓ∈[K] and vector γ = (γk)k∈[K] instead, where ηkℓ is the rate at which an infected
individual in community k infects its neighbors in community ℓ, and γk is the rate at which vertices
in community k recover. In such a model where the transmission rates vary by community, we
can also derive a set of differential equations based on the notion of active half-edges. Let Xkℓ be
the number of active half-edges going out of community k with an endpoint (not yet realized) in
community ℓ. Then at any given time
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• at rate γkXkℓ, we lose one active half-edge contributing to Xkℓ

• at rate ηkℓXkℓ, we explore one of the active half-edges contributing to Xkℓ.

When we explore an active half-edge contributing to Xkℓ, Xkℓ decreases by 1. Now, let us consider
how Xkℓ increases. Note that at rate ηjkXjk a half-edge in community j with (future) endpoint in
community k is explored. With probability Sk/nk the exploration leads to an infection, and in this
case Xkℓ increases by Pois(Dkℓ), where we recall that Dkℓ = Wkℓnℓ/n is the expected number of
half-edges from community k into community ℓ. Therefore,

• at an overall rate Sk
nk

∑
ℓ ηℓkXℓk, Sk goes down by 1 and Ik goes up by 1

• at an overall rate (ηkℓ + γk)Xkℓ, Xkℓ goes down by 1, and

• at an overall rate ∑j ηjkXjk
Sk
nk

, Xkℓ goes up by Pois(Dkℓ).

Furthermore, at time t = 0, E[Xkℓ(0)] = DkℓIk(0) Normalizing

ŝk(t) = Sk(t)
n

, îk(t) = Ik(t)
n

, and x̂kℓ(t) = Xkℓ(t)
nDkℓ

,

the expected rates of change for ŝk, x̂kℓ, and îk are given by

−ŝk

∑
j

ηjkWjkx̂jk, −(ηkℓ + γk)x̂kℓ + ŝk

∑
j

ηjkWjkx̂jk, −γk îk + ŝk

∑
j

ηjkWjkx̂jk,

respectively. The methods developed in Section 4 immediately imply a LLN for finite time horizons,
leading to the differential equations

dsk

dt
= −sk

∑
j

ηjkWjkxjk (68)

dxkℓ

dt
= −(ηkℓ + γk)xkℓ + sk

∑
j

ηjkWjkxjk (69)

dik

dt
= −γkik − dsk

dt
(70)

with initial conditions xkℓ(0) = ik(0). The herd immunity threshold is now the threshold for which
a new infection with xkℓ(t0) = ik(t0) does not grow by more than a constant. As the reader may
easily verify, this threshold is now governed by the spectral radius Reff(t) of the matrix

Ckℓ(t) = ηkℓ

ηkℓ + γk
Wkℓsℓ(t).

While the technical details will be more complicated, we believe that our techniques will again
allow one to prove an LLN which is uniform in the time horizon, but we have not worked out the
details.

We further believe that our methods should allow one to analyze a dynamic version of the
stochastic block model where susceptible-infected edges are rewired to susceptible-susceptible edges
as in Ball and Britton [2022]. Finally, while we believe that the study of SIR dynamics on many
random graph models will be amenable to the technology developed here, others, as e.g., an LLN
for the time evolution and final size of the SIR epidemic on dynamically grown models such as
preferential attachment might be more challenging.
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Appendix

A Branching Process Results
In this appendix, we derive several results about discrete time, multi-type branching processes used
in the main body of this paper.

A.1 Preliminaries

We start by establishing a few facts for multi-type branching processes which are usually formulated
in the more restricted setting of “positively regular” branching processes, see, e.g., Harris et al.
[1963], but hold more generally, often with proofs which are straightforward extensions of those in
the literature.

We assume a finite type space [K] and the associated state-space NK
0 , with the state corre-

sponding to a single individual of type k represented by the unit vector ek ∈ NK
0 in direction k.

We use Zm to denote the state of the branching process in generation m and Pk to denote the
probability distribution of (Zm)m≥0 when starting from Z0 = ek,

Pk(·) = P(· | Z0 = ek).

We define Gk(·) to be the generating function of the offspring distribution pk(z) = Pk(Z1 = z),
and more generally define the generating function of Zm by

G
(m)
k (s) =

∑
z

Pk(Zm = z)
K∏

i=1
szi

i .

Setting G(s) = (G1(s), . . . , GK(s)) and G(m)(s) = (G(m)
1 (s), . . . , G

(m)
K (s)), it is easy to see that

G
(m)
k (s) = Gk(G(m−1)(s)), showing that G(n)(·) is the nth iterate of G(·) = G(1)(·), the generating

function for the offspring distribution. Finally, we define the vector of extinction probabilities via

qk = Pk(Zm = 0 for some m < ∞).

Lemma A.1. Let (Zm)m≥0 be a branching process such that all states in NK
0 \ {0} are transient.

If 0 ≤ sk < 1 for all k, then G(m)(s) → q, where q = (q1, . . . , qk) is the vector of extinction
probabilities.

Proof. Expressing qk as the limit of Pk(Zm = 0) = G
(m)
k (0), we need to prove that G

(m)
k (s) −

G
(m)
k (0) → 0. To this end, we decompose the sum representing this difference into a finite sum plus

a tail,

G
(m)
k (s) − G

(m)
k (0) =

∑
z ̸=0

Pk(Zm = z)sz1
1 . . . szk

k ≤
∑

z ̸=0:∥z∥1≤R

Pk(Zm = z) + O(max
k

sR
k ). (71)

Since all z ̸= 0 are transient, the terms in the first sum go to 0 as m → ∞ for any fixed R. Choosing
first R large enough, and then m large enough, the right hand side can be made as small as desired,
proving the lemma.

To state the next lemma, we define a branching process to be irreducible if for all i, j ∈ [K],
there exists an m < ∞ such that P(Zm · ej > 0 | Z0 = ei) > 0.
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Lemma A.2. Let (Zm)m≥0 be an irreducible branching process such all states in NK
0 \ {0} are

transient. If there exists a solution s ̸= 1 to G(s) = s in [0, 1]K , then it is equal to q, and qk < 1
for all k.

Proof. In view of the previous lemma, all we need to show is that if s = G(s) and s ̸= 1, then
sk < 1 for all k. Assume w.l.o.g. that s1 < 1, and fix k. By irreducibility, there exists an m such
that Pk(Zm · e1 > 0) > 0, implying that the generating function G

(m)
k (s) depends explicitly on s1

and

G
(m)
k (s) =

∑
z

Pk(Zm = z)sz1
1 . . . szK

K ≤
∑

z,z1=0
Pk(Zm = z) +

∑
z,z1>0

Pk(Zm = z)sz1
1

<
∑

z,z1=0
Pk(Zm = z) +

∑
z,z1>0

Pk(Zm = z) = 1.

But, since s is a solution of s = G(s), it is also a solution of s = G(m)(s) implying sk < 1 and
hence the claim.

To use these lemmas, we will need to establish that all states z ̸= 0 are transient. While not
the most general lemma one can prove, the following will be sufficient for us.

Lemma A.3. Let S ⊂ NK
0 be a set of states z such that P(Z1 = z|Z0 = z) = 1, and assume that

for all z /∈ S there exists a state z′ ∈ S such that P(Z1 = z′|Z0 = z) > 0. Then all states z /∈ S
are transient, so in particular limm→∞ Pk(Zm = z) = 0 for all z /∈ S and all k ∈ [K].

Proof. Fix z /∈ S and z′ ∈ S such that P(Z1 = z′ | Z0 = z) = ε > 0, and let Tz be the first m such
that Zm revisits z when starting at z, i.e., let Tz = min{m > 0: Zm = z} conditioned on Z0 = z,
where the minimum is defined to be ∞ if there exists no such m. Then P(Tz < ∞ | Z0 = z) is the
probability that the chain revisits z at least once, and

P(Tz = ∞ | Z0 = z) ≥ P(Z1 = z′ | Z0 = z) = ε > 0.

On the other hand, by the strong Markov property of (Zm)m≥0, the probability distribution of Zm

after the stopping time Tz is independent of the history up to time Tz and identical to the original
distribution (after the obvious time shift by Tz). As a consequence, the probability that the chain
revisits z at least k times is equal to

P(Tz < ∞ | Z0 = z)k ≤ (1 − ε)k → 0 as k → ∞,

showing that z is transient.

Remark A.4. The forward and backward branching processes of the SIR model introduced in the
main part of this paper clearly obey the assumption of Lemma A.3, since any state has non-zero
probability of going extinct in one step by the properties of the Poisson distribution. Furthermore,
both are irreducible if W is irreducible, allowing us to use both Lemma A.1 and Lemma A.2 in this
case.

Lemma A.5. Let Z = ∑
m Zm be the total size of the branching process (Zm)m≥0 with offspring

mean matrix Ckℓ = E[Z1 · eℓ | Z0 = ek]. If C has spectral radius ρ(C) < 1 and all components of
Z1 have exponential tails, then all components of Z have exponential tails as well.
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Proof. Let ρ̃ be such that ρ(C) < ρ̃ < 1, and let v be a left eigenvector for the eigenvalue ρ(C),
chosen to have all positive entries (which is possible by Perron-Fröbenius). To prove the lemma,
we will first prove the existence of a constant α0 such that

E
[
eαv·Zm | Zm−1

]
≤ eαρ̃v·Zm−1 for all α ≤ α0, (72)

and then use this bound to show that

E
[
eαv·Z | Z0 = ek

]
≤ e

α
1−ρ̃

v·ek for all α ≤ α0(1 − ρ̃), (73)

establishing the existence of the moment-generating function of Z in some neighborhood around
0, and hence proving the claim.

Let Nk be a random variable such that P(Nk = z) = pk(z). By the assumption that the
offspring distribution has exponential tails, there exists some constant ζ < ∞ such that for all k
and all sufficiently small α

E
[
eαv·Nk(v · Nk)2

]
≤ ζ. (74)

Combined with the bound ex ≤ 1 + x + x2

2 ex, valid for all x ≥ 0, and the fact that E [v · Nk] =
vCek = ρ(C)v · ek, this implies that

E
[
eαv·Nk

]
≤ 1 + αE [v · Nk] + α2

2 E
[
(v · Nk)2eαv·Nk

]
≤ 1 + αρ(C)v · ek + α2

2 ζ. (75)

For α sufficiently small, we thus get that

E
[
eαv·Nk

]
≤ 1 + α

(
ρ(C)v · ek + αζ

2

)
≤ 1 + αρ̃v · ek ≤ eαρ̃v·ek . (76)

Furthermore, letting Nk,i ∼ Nk i.i.d., we have

E
[
eαv·Zm | Zm−1

]
=

∏
ℓ∈[K]

(Zm−1)ℓ∏
i=1

E
[
eαv·Nℓ,i

]
≤

∏
ℓ∈[K]

(Zm−1)ℓ∏
i=1

eαρ̃v·eℓ = eαρ̃v·Zm−1 .

This gives the bound Eq. (72).
As a consequence of Eq. (72) applied twice in a row, we we get that for α(1 + ρ̃) ≤ α0,

E
[
eαv·(Zm+Zm−1)

∣∣∣Zm−2
]

= E
[
E[eαv·Zm | Zm−1]eαv·Zm−1

∣∣∣Zm−2
]

≤ eα(ρ̃+ρ̃2)v·Zm−2 .

Continuing by induction, this proves that for α
∑m−1

i=0 ρ̃i ≤ α0,

E
[
eα
∑m

i=0 v·Zi

∣∣∣Z0 = ek

]
≤ eαv·ek

∑m

i=0 ρ̃i

.

The bound Eq. (73) follows by by monotone convergence.
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A.2 Backward Branching Process

In this section, we formally define the backwards branching process and use it to prove Lemma 6.9.The
process has label space [K + 1], with k = K + 1 representing an infected state and labels k ∈ [K]
representing susceptible vertices of type k, and state space NK+1

0 . We will use the notation
z̄ = (z, zK+1) = (z1, . . . , zK+1) for vectors in NK+1

0 , and similarly for vectors s̄ ∈ [0, 1]K+1. The
offspring distribution of the backward process is then defined as follows.

Let ak ≥ 0 and let pk(·) be the Poisson offspring distribution

pk(z) =
K∏

ℓ=1
P(Pois(Ckℓ) = zℓ).

For k ∈ [K], we set

p̄k(z̄) =
{

e−akpk(z) if zK+1 = 0
1 − e−ak if zK+1 = 1,

and for k = K + 1 we set

p̄K+1(z̄) = 1 if z̄ = (0, . . . , 0, 1) and 0 otherwise.

We will denote the generating function of this offspring distribution by F̄ , the state of the process
in generation m by Z̄m, and its generating function by F̄ (m). It is easy to express F̄ in terms of
the generating function G of the offspring distribution for the Poisson branching process, giving

F̄k(s̄) =
{

e−akGk(s) + (1 − e−ak) sK+1 if k ∈ [K]
sK+1 if k = K + 1.

If sK+1 = 0, this expression, as well as the expression for the iterates takes a particular simple
form, giving in particular

F̄
(m)
k ((s, 0)) =

{
F

(m)
k (s) if k ∈ [K]

0 if k = K + 1,

where F (m) is the mth iterate of
Fk(s) = e−akGk(s).

Note that the function Fk already appeared in the implicit equation Eq. (23) for the final proportion
of susceptible vertices, which we can now write in the form

sk = Fk(s). (77)

It is clear that the survival probability of the backward branching process starting from the state
Z̄0 = eK+1 is one. The following lemma gives an expression for the extinction (and equivalently
survival) probability starting from ek for k ∈ [K].

Lemma A.6. If 0 ≤ sk < 1 for all k ∈ [K], then F (m)(s) → q(a), where q(a) = (q1(a), . . . , qk(a))
is the vector of extinction probabilities, i.e., qk(a) = P(Z̄m = 0 for some m < ∞ | Z̄0 = ek).
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Proof. First, we note that by the same arguments as those used in the proof of Lemma A.3, all
states z̄ = (z, zK+1) with z̄ ̸= 0 are transient. To see this, set Tz̄ to be the first time the chain
revisits the state z̄, and note that

P(Tz̄ = ∞) ≥ P(Z̄1 = (0, . . . , 0, zK+1 | Z0 = z̄) > 0

since the probability that Poisson offspring distribution has 0 children is bounded away from 0.
Using the transience of the states z̄ = (z, zK+1) with z ̸= 0, we may then proceed as in the

proof of Lemma A.1 to conclude that

F
(m)
k (s) − Pk(Z̄m = 0) = F̄

(m)
k ((s, 0)) − F̄

(m)
k ((0, 0))

=
∑
z ̸=0

Pk(Z̄m = (z, 0))sz1
1 . . .zk

k ≤
∑

z ̸=0:∥z∥1≤R

Pk(Z̄m = z) + O(max
k

sR
k ).

As before, the right hand side can be made arbitrary small by choosing first R and then m large
enough, showing that the left hand side goes to 0 as m → ∞.

Lemma A.7 (Uniqueness of Solution to Implicit Equation). Assume that W is irreducible, and
that

∑
ℓ aℓ > 0. Then the implicit equations Eq. (77) are uniquely solved by s = q(a), where q(a)

is the vector of survival probabilities for the backward branching process, and qk(a) < 1 for all k.

Proof. In view of the last lemma, all we need to prove is that any solution s of Eq. (77) is smaller
than 1 component-wise. To this end, we first note that by the fact that Gk(s) ≤ 1 and our
assumption on a, there exists at least one component sℓ < 1. Next we use that s = F (m)(s) and
F ≤ G component wise imply that

sk ≤ G
(m)
k (s). (78)

But sℓ < 1 and irreducibility of the Poisson branching process imply that there exists an m such
that G

(m)
k (s) < 1, see the proof of Lemma A.2. Since k ∈ [K] was arbitrary, this completes the

proof.

Remark A.8. It follows immediately from the above proof that q(a) ≤ q component-wise, where
q is the smallest solution of the equation q = G(q) (which by Lemma A.2 is also the vector of
survival probabilities of the Poisson branching process with mean matrix C). Indeed, by Eq. (78),
q(a) ≤ G(m)(q(a)), and by Lemma A.1, the right hand side converges to q.

With these preparations, we are now ready to prove prove Lemma 6.9.

Proof of Lemma 6.9. Assume that (s̃(0), x̃(0)) → (s(0),x(0)) along some sequence. Let (C̃, ã) be
the corresponding values for the matrix C and the vector a, and let q(C̃, ã) be the corresponding se-
quence of survival probabilities. We want to show that q(C̃, ã) → q, where q is the vector of survival
probabilities of the Poisson branching process with mean matrix C. Consider some subsequence
(Cj ,aj)j∈N with (Cj ,aj) → (C,0) such that the limit of this subsequence q̃ := limj→∞ q(Cj ,aj)
exists, and let F j

k (·) be the corresponding sequence of generating funtions. Then

q̃k = lim
j→∞

qk(Cj ,aj) = lim
j→∞

F j
k (q(Cjaj)) = Gk(q̃),

where the last equality is true by the fact that F j
k (s) is jointly continuous in s and the parameters

Cj ,aj . Thus q̃ satisfies q̃ = G(q̃). To complete the proof, we consider two cases. If the spectral
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radius ρ(C) of C is at most one, we know that the survival probability of the Poisson branching
process is 0 and the implicit equation has only one solution, q̃ = 1, proving the desired convergence.
If ρ(C) > 1, we can find some ε > 0 such that ρ(C(1 − ε)) > 1, and by the convergence of Cj ,
some j0 such that for j ≥ j0, Cj ≥ (1 − ε)C. Since the survival probabilities are monontone
in the entries of the mean matrix, and qk(Cj ,aj) ≤ qk(Cj , 0) by Remark A.8, we conclude that
q̃ ≤ qε component-wise, where qε is survival probability of the Poisson branching process with
mean matrix (1−ε)C. Since the latter has a strictly positive survival probability, we conclude that
q̃ < 1 component wise. Therefore, q̃ = q by uniqueness of the non-trivial solution to q = G(q) for
probability generating functions. This gives the desired continuity result.

B Analysis of the Differential Equations for the SIR Epidemic on
the SBM

We start this appendix with the proof of Lemma 5.2.

Proof of Lemma 5.2 . We will write the differential equation dyt/dt = b(yt) in the explicit form
Eq. (3), Eq. (4), and Eq. (5) and note that yt ∈ U0 for all t < ∞ if y0 ∈ U0, see Remark 4.1.

By Eq. (3), dsk(t)/dt ≤ 0 for all t. Since sk(t) is non-negative, statement (a) follows by
monontone convergence. Next we combined Eq. (3) and Eq. (4) to conclude that

dxk(t)
dt

+ dsk(t)
dt

= −(η + γ)xk(t) ≤ 0 (79)

and Eq. (3) and Eq. (5) to conclude that

dik(t)
dt

+ dsk(t)
dt

= −γik(t) ≤ 0. (80)

Monotone convergence then implies the existence of the limits limt→∞(xk +sk)(t) and limt→∞(ik +
sk)(t). Combined with the already established existence of the limit for sk, this gives the existence
of the limits in (b) and (c).

To prove that xk(∞) = 0, suppose towards contradiction that xk(∞) > 0. Then there exist
some constants t0 < ∞ and ζ > 0 such that xk(t) ≥ ζ for all t ≥ t0. Inserted into Eq. (79), this
implies that

xk(t) + sk(t) ≤ xk(t0) + sk(t0) − (η + γ)ζ(t − t0)

for all t ≥ t0, which is a contradiction since yt ∈ U0 so in particular xk(t) + sk(t) ≥ 0 for all t < ∞.
This proves that xk(∞) = 0. The proof that ik(∞) = 0 is identical.

Next we prove (d). We integrate Eq. (3) to express sk(t) as

sk(t) = sk(0) exp
{

−η
∑

ℓ

χℓ(t)Wℓk

}
, (81)

where
χℓ(t) =

∫ t

0
xℓ(τ)dτ = xℓ(0) + sℓ(0) − sℓ(t) − xℓ(t)

η + γ
. (82)

Here the identity in Eq. (82) defines χℓ(t) and the second follows by integrating the differential
equation Eq. (79) from 0 to t. This shows that χℓ(t) is bounded uniformly in t implying claim (d).
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To prove (e), we first note that d
dtxk(t) ≥ −(η + γ)xk(t), showing that xk(t) > 0 for all finite

t ≥ t0 if xk(t0) > 0, and similarly for ik(t). Consider the set K (t) of indices k such that xk(t) > 0
at time t ≥ 0. We want to prove that K (t) = [K] for all t > 0. To this end, we will prove that if
K (t) ̸= [K], then we can find an ℓ /∈ K (t) such that ℓ ∈ K (t′) for all t′ > t. To see this, we use
that by irreducibly of W , we can find ℓ /∈ K (t) and k ∈ K (t) such that Wkℓ > 0, which shows
that

dxℓ

dt
= −(η + γ)xℓ(t) +

∑
k′

xk′(t)Wk′ℓsℓ(t) > xk(t)Wkℓsℓ(t) > 0.

This shows that ℓ ∈ K (t′) for t′ > t close enough to t, and by our previous observation that
xℓ(t′′) > 0 for all t′′ ≥ t′ if xℓ(t′) > 0, we get ℓ ∈ K (t′) for all t′ > t. Starting from the observation
that K (0) ̸= ∅, this implies by induction that K (t) = [K] for all t > 0, i.e, xk(t) > 0 for all
k ∈ [K] and all t > 0. With the help of Eq. (5) (and the fact that ik(t) > 0 implies ik(t′) > 0 for
all t′ > t) this in turn implies that ik(t) > 0 for all k ∈ [K] and all t > 0. Finally, xk(t) > 0 for all
0 < t < ∞ implies that dsk/dt < 0 with the help of Eq. (3).

Next we state and prove a lemma alluded to in the discussion section of this paper, showing
that eventually, all components of x(t) decay exponentially fast.

Lemma B.1. Assume that W is irreducible and that sk(0) > 0 for all k ∈ [K], let R∞ be the
largest eigenvalue of the matrix C(∞) = η

η+γ Wdiag(s(∞)), and let v∞ be the corresponding left
eigenvector, chosen to have all non-negative entries. If x(0) > 0, then R∞ < 1 and

lim
t→∞

x(t)e(η+γ)(1−R∞)t = Dv∞,

and
lim

t→∞

dx(t)
dt

e(η+γ)(1−R∞)t = −D(η + γ)(1 − R∞)v∞,

where D is a positive constant depending on the parameters of the model and the initial conditions
(and the chosen normalization for v∞).

Proof. Recall the vector form of the differential equations for the number of active half-edges
Eq. (53) in the SIR on SBM. By the results from Section 5.3, see in particular Lemma 5.5 and its
proof, R∞ < 1, and by the bound Eq. (27), the entries of C(t) differ from those of C(∞) by an
amount which is decaying exponentially fast in t. Combined with the Perron-Frobenius theorem,
which implies that x(t0)e(η+γ)(C(∞)−R∞)t converges to v∞ times the scalar product of x(t0) with a
suitably normalized right eigenvector and errors which are also exponentially small in t, this implies
the first statement. Inserted back into the differential equation for x(t), this gives the second.

We close this appendix with the proof of Lemma 7.1.

Proof of Lemma 7.1. Rescaling time so that η + γ = 1 (and η = 1 − γ), and using the differential
equations for ik and xk, we write the difference of the derivative of ik and xk as

dik

dt
− dxk

dt
= xk − γik. (83)

To prove the fact that xk < ik for all t > 0, we first analyze the ratio of xk and ik for small
t, distinguishing the case xk(0) > 0 and xk(0) = 0. If xk(0) = ik(0) > 0, we Taylor expand xk(t)
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and ik(t) as xk(t) = xk(0) + x′
k(0)t + O(t2) and ik(t) = xk(0) + x′

k(0)t + (i′
k(0) − x′

k(0))t + O(t2)
where we used that ik(0) = xk(0). Using the fact that i′

k(0) − x′
k(0) = xk(0) − γik(0) = ηxk(0) by

Eq. (83), this implies that
xk

ik
= 1 − ηt + O(t2).

when xk(0) = ik(0) > 0. If xk(0) = ik(0) = 0 we have that x′
k(0) = i′

k(0) = (x(0)C(0))k > 0 by the
irreducibility of C(0) and the fact that x(0) > 0, and i′′

k(0) − x′′
k(0) = x′

k(0) − γi′
k(0) = ηx′

k(0). As
a consequence, we may expand xk

ik
as

xk

ik
= 1 − ik − xk

ik
= 1 −

ηx′
k(0) t2

2
x′

k(0)t (1 + O(t)) = 1 − η

2 t + O(t2),

showing that in both cases γ < xk
ik

< 1 for all sufficiently small, positive t.
To prove that

xk

ik
< 1 for all t > 0,

we rewrite the differential equations for xk and ik as

d

dt
xk = (Zk − 1)xk and d

dt
ik = Zkxk − γik

where
Zk = (xC(t))k

xk
.

(Note that for all t > 0, both Zk and the ratio xk
ik

are well defined since ik > 0 and xk > 0 by
Lemma 5.1). Next, we calculate the derivative of the ratio xk

ik
, giving

d

dt

xk

ik
= xk

ik

(
x′

k

xk
− i′

k

ik

)
= xk

ik

(
Zk − 1 + γ − Zk

xk

ik

)
= xk

ik

(
Zk

(
1 − xk

ik

)
− η

)
.

Assume now towards a contradiction that there exists a time 0 < t < ∞ such that xk
ik

= 1, and let
t∗ be the first such time. For t = t∗, we then have that

d

dt

xk

ik
= 1 · (Zk · 0 − η) = −η,

which implies that shortly before t∗, xk
ik

> 1. Since xk
ik

is continuous on (0, ∞) and was strictly
smaller than 1 for small positive t, there must be another time t′ such that xk

ik
= 1, a contradiction.

To formalize the statement about the local maxima, we let t0 be the location of the first local
maximum of xk, which means that dxk

dt ≥ 0 for all t ≤ t0, with equality if and only if t = t0. Our
goal will be to prove that dik

dt > 0 for 0 ≤ t ≤ t0, including t = t0.
We start by proving this fact for t = 0. To this end, we note that if ik(0) = xk(0) = 0, then

i′
k(0) = (x(0)C(0)k > 0 as we already observed earlier, while for ik(0) = xk(0) > 0 the fact that

x′
k(0) ≥ 0 and Eq. (83) imply that i′

k(0) ≥ (1 − η)xk(0) > 0.
Next consider the quantity Zk for 0 < t ≤ t0. Since the derivative of xk is non-negative for

these t, we conclude that Zk ≥ 1, and combined with the fact that xk
ik

< 1 for all 0 < t < ∞, we
conclude that

d

dt

xk

ik
≥ xk

ik

(
1 − xk

ik
− η

)
= xk

ik

(
γ − xk

ik

)
for all 0 < t ≤ t0.
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Recalling that γ < xk
ik

for all sufficiently small t > 0, let tγ be the first time that γ = xk
ik

(if there is
no such time, we set tγ = ∞). In view of Eq. (83), we want to show that tγ > t0, since this would
imply that dik

dt > dxk
dt ≥ 0 for 0 ≤ t ≤ t0.

Assume towards a contradiction that tγ ≤ t0, and define ε(t) = log xk(t)
γik(t) . Then 0 < ε(t) ≤

ε(0) = − log γ for 0 < t < tγ and ε(tγ) = 0. Furthermore

d

dt
ε(t) ≥ γ

(
1 − eε(t)

)
≥ −γε(t)eε(t) ≥ −γ2ε(t) for all 0 < t ≤ tγ ,

implying that
0 = ε(tγ) ≥ e−γ2tγ ε(0) > 0,

a contradiction. This completes the proof of the lemma.
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